Variable-Temperature Electron Transport and Dipole Polarization Turning Flexible Multifunctional Microsensor beyond Electrical and Optical Energy

被引:383
作者
Cao, Mao-Sheng [1 ]
Wang, Xi-Xi [1 ]
Zhang, Min [1 ]
Cao, Wen-Qiang [1 ]
Fang, Xiao-Yong [2 ]
Yuan, Jie [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Hebei, Peoples R China
[3] Minzu Univ China, Sch Informat Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
graphenes; microsensors; temperature-driven plasma resonance; variable-temperature electromagnetic response; PERMITTIVITY; CONDUCTIVITY; SKIN;
D O I
10.1002/adma.201907156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Humans are undergoing a fateful transformation focusing on artificial intelligence, quantum information technology, virtual reality, etc., which is inseparable from intelligent nano-micro devices. However, the booming of "Big Data" brings about an even greater challenge by growing electromagnetic radiation. Herein, an innovative flexible multifunctional microsensor is proposed, opening up a new horizon for intelligent devices. It integrates "non-crosstalk" multiple perception and green electromagnetic interference shielding only in one pixel, with satisfactory sensitivity and fast information feedback. Importantly, beneficial by deep insight into the variable-temperature electromagnetic response, the microsensor tactfully transforms the urgent threat of electromagnetic radiation into "wealth," further integrating self-power. This result will refresh researchers' realization of next-generation devices, ushering in a new direction for aerospace engineering, remote sensing, communications, medical treatment, biomimetic robot, prosthetics, etc.
引用
收藏
页数:8
相关论文
共 69 条
  • [1] Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
    Arjmand, Mohammad
    Chizari, Kambiz
    Krause, Beate
    Poetschke, Petra
    Sundararaj, Uttandaraman
    [J]. CARBON, 2016, 98 : 358 - 372
  • [2] Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites
    Boland, Conor S.
    Khan, Umar
    Ryan, Gavin
    Barwich, Sebastian
    Charifou, Romina
    Harvey, Andrew
    Backes, Claudia
    Li, Zheling
    Ferreira, Mauro S.
    Mobius, Matthias E.
    Young, Robert J.
    Coleman, Jonathan N.
    [J]. SCIENCE, 2016, 354 (6317) : 1257 - 1260
  • [3] Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials
    Cao, Mao-Sheng
    Wang, Xi-Xi
    Zhang, Min
    Shu, Jin-Cheng
    Cao, Wen-Qiang
    Yang, Hui-Jing
    Fang, Xiao-Yong
    Yuan, Jie
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
  • [4] Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion
    Cao, Maosheng
    Wang, Xixi
    Cao, Wenqiang
    Fang, Xiaoyong
    Wen, Bo
    Yuan, Jie
    [J]. SMALL, 2018, 14 (29)
  • [5] Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties
    Cao, Wen-Tao
    Chen, Fei-Fei
    Zhu, Ying-Jie
    Zhang, Yong-Gang
    Jiang, Ying-Ying
    Ma, Ming-Guo
    Chen, Feng
    [J]. ACS NANO, 2018, 12 (05) : 4583 - 4593
  • [6] Layer-by-layer assembly of vertically conducting graphene devices
    Chen, Jing-Jing
    Meng, Jie
    Zhou, Yang-Bo
    Wu, Han-Chun
    Bie, Ya-Qing
    Liao, Zhi-Min
    Yu, Da-Peng
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [7] Chortos A, 2016, NAT MATER, V15, P937, DOI [10.1038/nmat4671, 10.1038/NMAT4671]
  • [8] Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage
    Dang, Zhi-Min
    Yuan, Jin-Kai
    Yao, Sheng-Hong
    Liao, Rui-Jin
    [J]. ADVANCED MATERIALS, 2013, 25 (44) : 6334 - 6365
  • [9] A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing
    Dong, Kai
    Wu, Zhiyi
    Deng, Jianan
    Wang, Aurelia C.
    Zou, Haiyang
    Chen, Chaoyu
    Hu, Dongmei
    Gu, Bohong
    Sun, Baozhong
    Wang, Zhong Lin
    [J]. ADVANCED MATERIALS, 2018, 30 (43)
  • [10] Structure and energetics of the vacancy in graphite
    El-Barbary, AA
    Telling, RH
    Ewels, CP
    Heggie, MI
    Briddon, PR
    [J]. PHYSICAL REVIEW B, 2003, 68 (14):