Using intragranular and intergranular second phase particles simultaneously to achieve high temperature stabilization of ultrafine grained Cu

被引:11
作者
Zeng, Wei [1 ]
Zheng, Dengqi [1 ]
Li, Hongmo [1 ]
Zhou, Dengshan [1 ]
Zhang, Deliang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2016年 / 670卷
基金
中国国家自然科学基金;
关键词
Ultrafine grained copper; Metal matrix nanocomposites; Thermal stability; Zener pinning; Particle coarsening; NANOCRYSTALLINE COPPER; HIGH-STRENGTH; ALLOYS; GROWTH; DUCTILITY; SIZE; MICROSTRUCTURE; NANOCOMPOSITES; STABILITY; STEELS;
D O I
10.1016/j.msea.2016.06.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A bulk ultrafine grained Cu-1.2 vol%NbC-7.1 vol%C nanocomposite was fabricated by combining high energy mechanical milling from a mixture of Cu, graphite and Nb powders with spark plasma sintering and hot extrusion of the milled powder. The microstructure of the ultrafine grained Cu matrix nano composite consisted of equiaxed ultrafine Cu grains, NbC nanoparticles mainly inside the Cu grains, and C particles along the Cu grain boundaries. The thermal stability of the microstructure of the ultrafine grained Cu matrix nanocomposite during 1 h isochronal annealing at temperatures ranging from 750 to 1050 C was investigated, and we found that the ultrafine grained microstructure of the Cu matrix exhibited excellent thermal stability. With annealing the extruded sample for 1 hat 1050 C (0.98T(m), where T-m is the melting point of Cu in Kelvin scale), the average Cu grain size just slightly increased from 126 to 157 nm, the NbC nanoparticles had an average size of about 8 nm, and the average size of the C particles increased significantly from 68 to 109 nm. The very high thermal stability of the microstructure of the ultrafine grained Cu matrix during annealing at the elevated temperature close to its melting point can be attributed to the suppression effect of both intragranular NbC nanoparticles and intergranular C particles on Cu grain growth. Based on this investigation, considerations to be made in selecting intragranular nanoparticles and intergranular particles for stabilizing the microstructures of nanocrystalline and ultrafine grained metals and achieving superior strength are proposed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 38 条
[1]   RELATIONSHIP BETWEEN SIZE OF CEMENTITE PARTICLES AND SUBGRAIN SIZE IN QUENCHED AND TEMPERED STEELS [J].
ANAND, L ;
GURLAND, J .
METALLURGICAL TRANSACTIONS, 1975, A 6 (04) :928-931
[2]   Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys [J].
Botcharova, E. ;
Freudenberger, J. ;
Schultz, L. .
ACTA MATERIALIA, 2006, 54 (12) :3333-3341
[3]   Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: An in situ study [J].
Boulnat, X. ;
Sallez, N. ;
Dade, M. ;
Borbely, A. ;
Bechade, J. -L. ;
de Carlan, Y. ;
Malaplate, J. ;
Brechet, Y. ;
de Geuser, F. ;
Deschamps, A. ;
Donnadieu, P. ;
Fabregue, D. ;
Perez, M. .
ACTA MATERIALIA, 2015, 97 :124-130
[4]   Design of Stable Nanocrystalline Alloys [J].
Chookajorn, Tongjai ;
Murdoch, Heather A. ;
Schuh, Christopher A. .
SCIENCE, 2012, 337 (6097) :951-954
[5]  
Ciek J., 2002, PHYS REV B, V65
[6]   Grain-size stabilization in nanocrystalline FeZr alloys [J].
Darling, Kris A. ;
Chan, Ryan N. ;
Wong, Patrick Z. ;
Semones, Jonathan E. ;
Scattergood, Ronald O. ;
Koch, Carl C. .
SCRIPTA MATERIALIA, 2008, 59 (05) :530-533
[7]  
DeVincent S.M., 1991, 187087 NASA CR
[8]  
Fan D, 1998, J AM CERAM SOC, V81, P526, DOI 10.1111/j.1151-2916.1998.tb02370.x
[9]   Stabilization and strengthening of nanocrystalline copper by alloying with tantalum [J].
Frolov, T. ;
Darling, K. A. ;
Kecskes, L. J. ;
Mishin, Y. .
ACTA MATERIALIA, 2012, 60 (05) :2158-2168
[10]   2ND PHASE PARTICLE DISTRIBUTION AND SECONDARY RECRYSTALLIZATION [J].
GLADMAN, T .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 27 (11) :1569-1573