A parabolic approximation scheme for multi-phase-filed simulation of non-isothermal solidification

被引:3
作者
Yang, Chao [1 ,2 ]
Wang, Jing [1 ,2 ]
Xing, Hui [3 ,4 ]
Huang, Houbing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Northwestern Polytech Univ, MOE Key Lab Mat Phys & Chem Extraordinary, Xian 710129, Peoples R China
[4] Northwestern Polytech Univ, Shaanxi Key Lab Condensed Matter Struct & Propert, Xian 710129, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2021年 / 28卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Parabolic approximation scheme; Multi-phase-field simulation; Non-isothermal peritectic solidification; Ti-Al alloy; FIELD MODEL; EVOLUTION;
D O I
10.1016/j.mtcomm.2021.102712
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A parabolic approximation scheme is proposed to implement the multi-phase-filed simulation of non-isothermal solidification. Based on the second-order fitting of free energy density function, this scheme constructs an explicit expression for the calculation of phase compositions, which is more efficient than the traditional Newton's iteration scheme used in the Kim-Kim-Suzuki model. As an application example of this numeral scheme, the peritectic solidification of Ti-Al alloy is simulated to present the coupling of multi-phase field and concentration field, which reveals the non-isothermal evolution principle of microstructure and micro-segregation. The present study not only improves the calculation efficiency through a new numeral scheme, but also contributes to the understanding of the thermodynamics and kinetics of Ti-Al peritectic solidification.
引用
收藏
页数:10
相关论文
共 26 条
[1]   Computation of multiphase systems with phase field models [J].
Badalassi, VE ;
Ceniceros, HD ;
Banerjee, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :371-397
[2]   Peritectic titanium alloys for 3D printing [J].
Barriobero-Vila, Pere ;
Gussone, Joachim ;
Stark, Andreas ;
Schell, Norbert ;
Haubrich, Jan ;
Requena, Guillermo .
NATURE COMMUNICATIONS, 2018, 9
[3]  
Batalu D, 2006, UNIV POLITEH BUCHAR, V68, P77
[4]   A phase field model for isothermal solidification of multicomponent alloys [J].
Cha, PR ;
Yeon, DH ;
Yoon, JK .
ACTA MATERIALIA, 2001, 49 (16) :3295-3307
[5]   A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases [J].
Choudhury, Abhik ;
Kellner, Michael ;
Nestler, Britta .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2015, 19 (05) :287-300
[6]   Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J].
Eiken, J. ;
Boettger, B. ;
Steinbach, I. .
PHYSICAL REVIEW E, 2006, 73 (06)
[7]   Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations [J].
Eiken, J. ;
Apel, M. ;
Witusiewicz, V. T. ;
Zollinger, J. ;
Hecht, U. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
[8]   Phase-Field Modeling of Microstructural Evolution by Freeze-Casting [J].
Huang, Tsung-Hui ;
Huang, Tzu-Hsuan ;
Lin, Yang-Shan ;
Chang, Chih-Hsiang ;
Chen, Po-Yu ;
Chang, Shu-Wei ;
Chen, Chuin-Shan .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (03)
[9]   Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys [J].
Keller, Trevor ;
Lindwall, Greta ;
Ghosh, Supriyo ;
Ma, Li ;
Lane, Brandon M. ;
Zhang, Fan ;
Kattner, Ursula R. ;
Lass, Eric A. ;
Heigel, Jarred C. ;
Idell, Yaakov ;
Williams, Maureen E. ;
Allen, Andrew J. ;
Guyer, Jonathan E. ;
Levine, Lyle E. .
ACTA MATERIALIA, 2017, 139 :244-253
[10]   Phase-field model for binary alloys [J].
Kim, SG ;
Kim, WT ;
Suzuki, T .
PHYSICAL REVIEW E, 1999, 60 (06) :7186-7197