Multi-parametric Analysis for Atrial Fibrillation Classification in ECG

被引:12
作者
Christov, Ivaylo [1 ]
Krasteva, Vessela [1 ]
Simova, Iana [2 ]
Neycheva, Tatiana [1 ]
Schmid, Ramun [3 ]
机构
[1] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Sofia, Bulgaria
[2] Acibadem City Clin Cardiovasc Ctr, Sofia, Bulgaria
[3] Schiller AG, Signal Proc, Baar, Netherlands
来源
2017 COMPUTING IN CARDIOLOGY (CINC) | 2017年 / 44卷
关键词
AUTOMATIC DETECTION;
D O I
10.22489/CinC.2017.175-021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study participates in the PhysioNet/CinC Challenge 2017 dedicated to the discrimination of atrial fibrillation (AF) from Normal sinus rhythm (Normal), other arrhythmia (Other) and strong noise using single short ECG lead recordings. Our Matlab entry applies multi-parametric AF classification based on: noise detection; heart rate variability analysis (HRV); beat morphology analysis after robust synthesis of an average beat and delineation of P, QRS, T waves; detection of atrial activity by the presence of a P-wave in the average beat and f-waves during TQ intervals. A Linear discriminant classifier is optimized by maximization of the Challenge F1 score, adjusting the prior probabilities of 4 classes and stepwise selection of a non-redundant feature set. Top-5 features, which contribute to >90% of F1 score are 3 HRV features, P-wave presence and mean correlation of all beats against the average beat. On the blinded test set, our entry has F1 score: 0.89 (Normal), 0.85 (AF), 0.67 (Other), 0.80 (Overall).
引用
收藏
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2013, Stud Log Gramm Rhetor, DOI [DOI 10.2478/SLGR-2013-0031, 10.2478/slgr-2013-0031]
[2]  
Camm AJ, 2010, EUR HEART J, V31, P2369, DOI [10.1093/eurheartj/ehq278, 10.1093/europace/euq350]
[3]  
Camm AJ, 1996, EUR HEART J, V17, P354
[4]   Sequential analysis for automatic detection of atrial fibrillation and flutter [J].
Christov, I ;
Bortolan, G ;
Daskalov, I .
COMPUTERS IN CARDIOLOGY 2001, VOL 28, 2001, 28 :293-296
[5]   Automatic detection of atrial fibrillation and flutter by wave rectification method [J].
Christov, I. ;
Bortolan, G. ;
Daskalov, I. .
Journal of Medical Engineering and Technology, 2001, 25 (05) :217-221
[6]  
Christov I., 2006, Comput. Cardiol, V33, P321
[7]   AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017 [J].
Clifford, Gari D. ;
Liu, Chengyu ;
Moody, Benjamin ;
Lehman, Li-Wei H. ;
Silva, Ikaro ;
Li, Qiao ;
Johnson, A. E. ;
Mark, Roger G. .
2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
[8]   Atrial wave detection algorithm for discovery of some rhythm abnormalities [J].
Dotsinsky, Ivan .
PHYSIOLOGICAL MEASUREMENT, 2007, 28 (05) :595-610
[9]   Sensitivity of temporal heart rate variability in Poincare plot to changes in parasympathetic nervous system activity [J].
Karmakar, Chandan K. ;
Khandoker, Ahsan H. ;
Voss, Andreas ;
Palaniswami, Marimuthu .
BIOMEDICAL ENGINEERING ONLINE, 2011, 10
[10]   Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity [J].
Ladavich, Steven ;
Ghoraani, Behnaz .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 18 :274-281