Regularity for minimizers of double phase functionals with mild transition and regular coefficients

被引:5
作者
Coscia, Alessandra [1 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 53-A, I-43100 Parma, Italy
关键词
Functionals with nonstandard growth; Holder regularity of minimizers; HOLDER CONTINUITY; GRADIENT; EQUATIONS;
D O I
10.1016/j.jmaa.2020.124569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove sharp regularity results for minimizers of the functional P(w, Omega) := integral(Omega) b(x, w) [vertical bar Dw vertical bar(p) + a(x)vertical bar Dw vertical bar(p) log (e + vertical bar Dw vertical bar)] dx, with w is an element of W-1,W-1(Omega), p > 1, a is an element of L-infinity(Omega), a(.) >= 0, and 0 < nu <= b(., .) <= L. P is a double phase functional with mild transition between vertical bar Du vertical bar(p) and vertical bar Du vertical bar(p) log (e + vertical bar Du vertical bar). First, under suitable conditions on the moduli of continuity of a(.) and b(., .), we prove that local minimizers are of class C-0,C-alpha for every alpha is an element of (0, 1), then that they are of class C-1,C-alpha for some alpha > 0, provided the functions a(.) and b(., .) are Holder continuous. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:36
相关论文
共 51 条
[1]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[2]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[5]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[6]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[7]   Lipschitz Bounds and Nonuniform Ellipticity [J].
Beck, Lisa ;
Mingione, Giuseppe .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) :944-1034
[8]  
Bella P., 2020, ANAL PDE
[9]   C1,α-solutions to non-autonomous anisotropic variational problems [J].
Bildhauer, M ;
Fuchs, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) :309-340
[10]  
Brezis H, 2011, UNIVERSITEXT, P1