Realization of a Townes Soliton in a Two-Component Planar Bose Gas

被引:36
作者
Bakkali-Hassani, B. [1 ]
Maury, C. [1 ]
Zou, Y-Q [1 ]
Le Cerf, E. [1 ]
Saint-Jalm, R. [3 ]
Castilho, P. C. M. [2 ]
Nascimbene, S. [1 ]
Dalibard, J. [1 ]
Beugnon, J. [1 ]
机构
[1] Sorbonne Univ, ENS PSL Univ, Coll France, Lab Kastler Brossel,CNRS, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[2] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, Brazil
[3] Ludwig Maximilian Univ Munchen, Dept Phys, Schellingstr 4, D-80799 Munich, Germany
基金
欧盟地平线“2020”;
关键词
SPATIAL SOLITONS; PROPAGATION; BEAMS; DROPLETS; MEDIA;
D O I
10.1103/PhysRevLett.127.023603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g and particle number N. By contrast, in two dimensions, solitons appear only for discrete values of gN, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers, and sizes and confirm the existence of a solitonic behavior for a specific value of gN and arbitrary sizes, a hallmark of scale invariance.
引用
收藏
页数:6
相关论文
共 53 条
  • [1] Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates
    Altin, P. A.
    McDonald, G.
    Doering, D.
    Debs, J. E.
    Barter, T. H.
    Close, J. D.
    Robins, N. P.
    Haine, S. A.
    Hanna, T. M.
    Anderson, R. P.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [2] SOLITON PROPAGATION AND SELF-CONFINEMENT OF LASER-BEAMS BY KERR OPTICAL NON-LINEARITY
    BARTHELEMY, A
    MANEUF, S
    FROEHLY, C
    [J]. OPTICS COMMUNICATIONS, 1985, 55 (03) : 201 - 206
  • [3] Energy of N two-dimensional bosons with zero-range interactions
    Bazak, B.
    Petrov, D. S.
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [4] CW SELF-FOCUSING AND SELF-TRAPPING OF LIGHT IN SODIUM VAPOR
    BJORKHOL.JE
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1974, 32 (04) : 129 - 132
  • [5] Dilute quantum droplets
    Bulgac, A
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (05) : 1 - 050402
  • [6] Dark solitons in Bose-Einstein condensates
    Burger, S
    Bongs, K
    Dettmer, S
    Ertmer, W
    Sengstock, K
    Sanpera, A
    Shlyapnikov, GV
    Lewenstein, M
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (25) : 5198 - 5201
  • [7] Quantum liquid droplets in a mixture of Bose-Einstein condensates
    Cabrera, C. R.
    Tanzi, L.
    Sanz, J.
    Naylor, B.
    Thomas, P.
    Cheiney, P.
    Tarruell, L.
    [J]. SCIENCE, 2018, 359 (6373) : 301 - +
  • [8] Exciton-Polariton Gap Solitons in Two-Dimensional Lattices
    Cerda-Mendez, E. A.
    Sarkar, D.
    Krizhanovskii, D. N.
    Gavrilov, S. S.
    Biermann, K.
    Skolnick, M. S.
    Santos, P. V.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [9] Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates
    Cheiney, P.
    Cabrera, C. R.
    Sanz, J.
    Naylor, B.
    Tanzi, L.
    Tarruell, L.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [10] Chen C.-A, 2021, PHYS REV LETT, V127