Realization of a Townes Soliton in a Two-Component Planar Bose Gas

被引:38
作者
Bakkali-Hassani, B. [1 ]
Maury, C. [1 ]
Zou, Y-Q [1 ]
Le Cerf, E. [1 ]
Saint-Jalm, R. [3 ]
Castilho, P. C. M. [2 ]
Nascimbene, S. [1 ]
Dalibard, J. [1 ]
Beugnon, J. [1 ]
机构
[1] Sorbonne Univ, ENS PSL Univ, Coll France, Lab Kastler Brossel,CNRS, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[2] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, Brazil
[3] Ludwig Maximilian Univ Munchen, Dept Phys, Schellingstr 4, D-80799 Munich, Germany
基金
欧盟地平线“2020”;
关键词
SPATIAL SOLITONS; PROPAGATION; BEAMS; DROPLETS; MEDIA;
D O I
10.1103/PhysRevLett.127.023603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g and particle number N. By contrast, in two dimensions, solitons appear only for discrete values of gN, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers, and sizes and confirm the existence of a solitonic behavior for a specific value of gN and arbitrary sizes, a hallmark of scale invariance.
引用
收藏
页数:6
相关论文
共 53 条
[1]   Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates [J].
Altin, P. A. ;
McDonald, G. ;
Doering, D. ;
Debs, J. E. ;
Barter, T. H. ;
Close, J. D. ;
Robins, N. P. ;
Haine, S. A. ;
Hanna, T. M. ;
Anderson, R. P. .
NEW JOURNAL OF PHYSICS, 2011, 13
[2]   SOLITON PROPAGATION AND SELF-CONFINEMENT OF LASER-BEAMS BY KERR OPTICAL NON-LINEARITY [J].
BARTHELEMY, A ;
MANEUF, S ;
FROEHLY, C .
OPTICS COMMUNICATIONS, 1985, 55 (03) :201-206
[3]   Energy of N two-dimensional bosons with zero-range interactions [J].
Bazak, B. ;
Petrov, D. S. .
NEW JOURNAL OF PHYSICS, 2018, 20
[4]   CW SELF-FOCUSING AND SELF-TRAPPING OF LIGHT IN SODIUM VAPOR [J].
BJORKHOL.JE ;
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1974, 32 (04) :129-132
[5]   Dilute quantum droplets [J].
Bulgac, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :1-050402
[6]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[7]   Quantum liquid droplets in a mixture of Bose-Einstein condensates [J].
Cabrera, C. R. ;
Tanzi, L. ;
Sanz, J. ;
Naylor, B. ;
Thomas, P. ;
Cheiney, P. ;
Tarruell, L. .
SCIENCE, 2018, 359 (6373) :301-+
[8]   Exciton-Polariton Gap Solitons in Two-Dimensional Lattices [J].
Cerda-Mendez, E. A. ;
Sarkar, D. ;
Krizhanovskii, D. N. ;
Gavrilov, S. S. ;
Biermann, K. ;
Skolnick, M. S. ;
Santos, P. V. .
PHYSICAL REVIEW LETTERS, 2013, 111 (14)
[9]   Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates [J].
Cheiney, P. ;
Cabrera, C. R. ;
Sanz, J. ;
Naylor, B. ;
Tanzi, L. ;
Tarruell, L. .
PHYSICAL REVIEW LETTERS, 2018, 120 (13)
[10]  
Chen C.-A, 2021, PHYS REV LETT, V127