Electronic synapses made of layered two-dimensional materials

被引:581
作者
Shi, Yuanyuan [1 ,2 ]
Liang, Xianhu [1 ]
Yuan, Bin [1 ]
Chen, Victoria [2 ]
Li, Haitong [2 ]
Hui, Fei [1 ]
Yu, Zhouchangwan [2 ]
Yuan, Fang [2 ,3 ]
Pop, Eric [2 ]
Wong, H. -S. Philip [2 ]
Lanza, Mario [1 ]
机构
[1] Soochow Univ, Collaborat Innovat Ctr Suzhou Nanosci & Technol, Inst Funct Nano & Soft Mat, Suzhou, Peoples R China
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
HEXAGONAL BORON-NITRIDE; ARTIFICIAL SYNAPSE; GRAPHENE; BREAKDOWN; THIN; MECHANISMS; PLASTICITY; MEMRISTORS; MEMORIES; DEVICE;
D O I
10.1038/s41928-018-0118-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic computing systems, which use electronic synapses and neurons, could overcome the energy and throughput limitations of today's computing architectures. However, electronic devices that can accurately emulate the short-and long-term plasticity learning rules of biological synapses remain limited. Here, we show that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses. The devices can operate in a volatile or non-volatile regime, enabling the emulation of a range of synaptic-like behaviour, including both short-and long-term plasticity. The behaviour results from a resistive switching mechanism in the h-BN stack, based on the generation of boron vacancies that can be filled by metallic ions from the adjacent electrodes. The power consumption in standby and per transition can reach as low as 0.1 fW and 600 pW, respectively, and with switching times reaching less than 10 ns, demonstrating their potential for use in energy-efficient brain-like computing.
引用
收藏
页码:458 / 465
页数:8
相关论文
共 49 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   A Thermally Stable and High-Performance 90-nm Al2O3\Cu-Based 1T1R CBRAM Cell [J].
Belmonte, Attilio ;
Kim, Woosik ;
Chan, Boon Teik ;
Heylen, Nancy ;
Fantini, Andrea ;
Houssa, Michel ;
Jurczak, Malgorzata ;
Goux, Ludovic .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (11) :3690-3695
[3]   Emulating short-term synaptic dynamics with memristive devices [J].
Berdan, Radu ;
Vasilaki, Eleni ;
Khiat, Ali ;
Indiveri, Giacomo ;
Serb, Alexandru ;
Prodromakis, Themistoklis .
SCIENTIFIC REPORTS, 2016, 6
[4]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[5]   Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes [J].
Cannon, Robert C. ;
O'Donnell, Cian ;
Nolan, Matthew F. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (08)
[6]   Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Lu, Wei .
ACS NANO, 2011, 5 (09) :7669-7676
[7]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[8]  
Chen YY, 2014, S VLSI TECH, DOI 10.1109/VLSIT.2014.6894403
[9]  
Cortese S, 2016, INT SYM VLSI TECHNOL
[10]   Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics [J].
Du, Chao ;
Ma, Wen ;
Chang, Ting ;
Sheridan, Patrick ;
Lu, Wei D. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (27) :4290-4299