Time-Domain and Monostatic-like Frequency-Domain Methods for Bistatic SAR Simulation

被引:6
|
作者
Di Martino, Gerardo [1 ]
Iodice, Antonio [1 ]
Natale, Antonio [2 ]
Riccio, Daniele [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, I-80125 Naples, Italy
[2] Consiglio Nazl Ric CNR, Ist Rilevamento Elettromagnet Ambiente IREA, I-80124 Naples, Italy
关键词
bistatic SAR; SAR simulation; SAR processing; SYNTHETIC-APERTURE RADAR; RAW SIGNAL SIMULATION; SCATTERING;
D O I
10.3390/s21155012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In recent years, an increasing interest has been devoted to bistatic SAR configurations, which can be effectively used to improve system performance and/or to increase the amount of physical information retrievable from the observed scene. Within this context, the availability of simulation tools is of paramount importance, for both mission planning and processing algorithm verification and testing. In this paper, a time domain simulator useful to obtain the point-spread function and the raw signal for the generic bistatic SAR configuration is presented. Moreover, we focus on the case of two bistatic configurations, which are of considerable interest in actual SAR applications, i.e., the translational invariant SAR and the one-stationary SAR acquisition geometries, for which we obtain meaningful expressions of the Transfer Functions. In particular, these expressions are formally equal to those obtained for the monostatic SAR configuration, so that the already available monostatic simulator can be easily adapted to these bistatic cases. The point-target raw signals obtained using the (exact) time domain simulator and the (approximated) frequency domain one are compared, with special attention to acquisition geometries that may be of practical interest in Formation-Flying SAR applications. Results show that the phase difference between raw signals simulated with the two approaches is, in all cases, smaller (and often much smaller) than about 10 degrees, except that at the very edge of the raw signals, where however, it does not exceed about 50 degrees.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] An investigation of bridge influence line identification using time-domain and frequency-domain methods
    Mustafa, Samim
    Yoshida, Ikumasa
    Sekiya, Hidehiko
    STRUCTURES, 2021, 33 : 2061 - 2065
  • [22] A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods
    da Fonseca, Antonio Viana
    Ferreira, Cristiana
    Fahey, Martin
    GEOTECHNICAL TESTING JOURNAL, 2009, 32 (02): : 91 - 107
  • [23] Frequency-domain and time-domain methods for feedback nonlinear systems and applications to chaos control
    Duan, Zhisheng
    Wang, Jinzhi
    Yang, Ying
    Huang, Lin
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 848 - 861
  • [24] Comparison of frequency measurement between time-domain and frequency-domain in DSO
    Wei, J
    Chen, CL
    2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 808 - 811
  • [25] Transforming characteristic of phase-shift from frequency-domain to time-domain in frequency-domain holography
    Dong, Jun
    Lu, Zhong-gui
    Sun, Zhi-hong
    Peng, Zhi-tao
    Xia, Yan-wen
    Su, Jing-qin
    Jing, Feng
    Yuan, Hao-yu
    Liu, Hua
    Tang, Jun
    OPTICS AND LASER TECHNOLOGY, 2012, 44 (03): : 594 - 599
  • [26] ONLINE TIME-DOMAIN AND FREQUENCY-DOMAIN IDENTIFICATION OF UNSTABLE PROCESSES
    DORAISWAMI, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (05) : 863 - 885
  • [27] An analysis and comparison of frequency-domain and time-domain input shaping
    Pao, LY
    Cutforth, CF
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3072 - 3074
  • [28] Time-Domain Processing of Frequency-Domain Data and Its Application
    Chin, Wen-Long
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2012, E95B (04) : 1406 - 1409
  • [29] Time-domain and frequency-domain macromodeling: Application to package structures
    Grivet-Talocia, S
    Stievano, IS
    Maio, IA
    Canavero, F
    2003 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SYMPOSIUM RECORD, VOLS 1 AND 2, 2003, : 570 - 574
  • [30] TIME-DOMAIN AND FREQUENCY-DOMAIN ANALYSIS OF ACOUSTIC SCATTERING BY SPHERES
    THORNE, PD
    BRUDNER, TJ
    WATERS, KR
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 95 (05): : 2478 - 2487