Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains

被引:20
|
作者
Wu, Xuechang [1 ]
Zhang, Lijie [1 ]
Jin, Xinna [1 ]
Fang, Yahong [1 ]
Zhang, Ke [1 ]
Qi, Lei [2 ]
Zheng, Daoqiong [2 ]
机构
[1] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Acetic acid; Bioethanol; JJJ1; Saccharomyces cerevisiae; Tolerance; ETHANOL FERMENTATION; TRANSCRIPTION FACTOR; H+-ATPASE; J-PROTEIN; YEAST; STRESS; IDENTIFICATION; ADAPTATION; BIOGENESIS; GENE;
D O I
10.1007/s10529-016-2085-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BY Delta JJJ1 was similar to 16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BY Delta JJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.
引用
收藏
页码:1097 / 1106
页数:10
相关论文
共 50 条
  • [1] Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains
    Xuechang Wu
    Lijie Zhang
    Xinna Jin
    Yahong Fang
    Ke Zhang
    Lei Qi
    Daoqiong Zheng
    Biotechnology Letters, 2016, 38 : 1097 - 1106
  • [2] Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
    Zheng, Dao-Qiong
    Wu, Xue-Chang
    Tao, Xiang-Lin
    Wang, Pin-Mei
    Li, Ping
    Chi, Xiao-Qin
    Li, Yu-Dong
    Yan, Qing-Feng
    Zhao, Yu-Hua
    BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 3020 - 3027
  • [3] Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation
    Oshoma, Cyprian E.
    Greetham, Darren
    Louis, Edward J.
    Smart, Katherine A.
    Phister, Trevor G.
    Powell, Chris
    Du, Chenyu
    PLOS ONE, 2015, 10 (08):
  • [4] Disruption of RGD1 Gene Improves Acetic Acid Tolerance in Saccharomyces cerevisiae
    Kim, H. S.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2024, 60 (02) : 294 - 300
  • [5] Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH
    Sanchez i Nogue, Violeta
    Narayanan, Venkatachalam
    Gorwa-Grauslund, Marie F.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (16) : 7517 - 7525
  • [6] Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae
    Oh, Eun Joong
    Wei, Na
    Kwak, Suryang
    Kim, Heejin
    Jin, Yong-Su
    JOURNAL OF BIOTECHNOLOGY, 2019, 292 : 1 - 4
  • [7] Formate Dehydrogenase Improves the Resistance to Formic Acid and Acetic Acid Simultaneously in Saccharomyces cerevisiae
    Du, Cong
    Li, Yimin
    Xiang, Ruijuan
    Yuan, Wenjie
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [8] Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae
    Zhang, Xiaohuan
    Nijland, Jeroen G.
    Driessen, Arnold J. M.
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2022, 15 (01):
  • [9] Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid
    Ko, Ja Kyong
    Enkh-Amgalan, Tseveendorj
    Gong, Gyeongtaek
    Um, Youngsoon
    Lee, Sun-Mi
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2020, 12 (01): : 90 - 100
  • [10] Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1
    Zhang, Ming-Ming
    Zhao, Xin-Qing
    Cheng, Cheng
    Bai, Feng-Wu
    BIOTECHNOLOGY JOURNAL, 2015, 10 (12) : 1903 - 1911