A fast segmentation-free fully automated approach to white matter injury detection in preterm infants

被引:13
作者
Mukherjee, Subhayan [1 ]
Cheng, Irene [1 ]
Miller, Steven [2 ,3 ]
Guo, Ting [2 ,3 ]
Chau, Vann [2 ,3 ]
Basu, Anup [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, 402 Athabasca Hall, Edmonton, AB T6G 2H1, Canada
[2] Hosp Sick Children, Toronto, ON, Canada
[3] Univ Toronto, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
White matter injury; Segmentation; Magnetic resonance imaging; Preterm newborn; Atlas-free; MULTIPLE-SCLEROSIS LESIONS; BRAIN SEGMENTATION; MRI; MODEL; ALGORITHM;
D O I
10.1007/s11517-018-1829-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
White matter injury (WMI) is the most prevalent brain injury in the preterm neonate leading to developmental deficits. However, detecting WMI in magnetic resonance (MR) images of preterm neonate brains using traditional WM segmentation-based methods is difficult mainly due to lack of reliable preterm neonate brain atlases to guide segmentation. Hence, we propose a segmentation-free, fast, unsupervised, atlas-free WMI detection method. We detect the ventricles as blobs using a fast linear maximally stable extremal regions algorithm. A reference contour equidistant from the blobs and the brain-background boundary is used to identify tissue adjacent to the blobs. Assuming normal distribution of the gray-value intensity of this tissue, the outlier intensities in the entire brain region are identified as potential WMI candidates. Thereafter, false positives are discriminated using appropriate heuristics. Experiments using an expert-annotated dataset show that the proposed method runs 20 times faster than our earlier work which relied on time-consuming segmentation of the WM region, without compromising WMI detection accuracy.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 48 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHMS S
[2]  
[Anonymous], 2004, EROSION DILATION
[3]   Multiple Sclerosis: Identification of Temporal Changes in Brain Lesions with Computer-Assisted Detection Software [J].
Bilello, M. ;
Arkuszewski, M. ;
Nucifora, P. ;
Nasrallah, I. ;
Melhem, E. R. ;
Cirillo, L. ;
Krejza, J. .
NEURORADIOLOGY JOURNAL, 2013, 26 (02) :143-150
[4]   Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Roura, Eloy ;
Freixenet, Jordi ;
Vilanova, Joan C. ;
Ramio-Torrenta, Lluis ;
Rovira, Alex ;
Llado, Xavier .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) :147-161
[5]  
Castellino Ronald A, 2005, Cancer Imaging, V5, P17, DOI 10.1102/1470-7330.2005.0018
[6]   Effect of Chorioamnionitis on Brain Development and Injury in Premature Newborns [J].
Chau, Vann ;
Poskitt, Kenneth J. ;
McFadden, Deborah E. ;
Bowen-Roberts, Tim ;
Synnes, Anne ;
Brant, Rollin ;
Sargent, Michael A. ;
Soulikias, Wendy ;
Miller, Steven P. .
ANNALS OF NEUROLOGY, 2009, 66 (02) :155-164
[7]   Stochastic process for white matter injury detection in preterm neonates [J].
Cheng, Irene ;
Miller, Steven P. ;
Duerden, Emma G. ;
Sun, Kaiyu ;
Chau, Vann ;
Adams, Elysia ;
Poskitt, Kenneth J. ;
Branson, Helen M. ;
Basu, Anup .
NEUROIMAGE-CLINICAL, 2015, 7 :622-630
[8]   A Semi-Automatic Algorithm for Determining the Demyelination Load in Metachromatic Leukodystrophy [J].
Clas, Philipp ;
Groeschel, Samuel ;
Wilke, Marko .
ACADEMIC RADIOLOGY, 2012, 19 (01) :26-34
[9]   Are Acute Infarcts the Cause of Leukoaraiosis? Brain Mapping for 16 Consecutive Weeks [J].
Conklin, John ;
Silver, Frank L. ;
Mikulis, David J. ;
Mandell, Daniel M. .
ANNALS OF NEUROLOGY, 2014, 76 (06) :899-904
[10]  
Dawood Salman S, 2012, 2012 1 NAT C ENG SCI, P1