OPTIMAL CONTROL OF THE UNDAMPED LINEAR WAVE EQUATION WITH MEASURE VALUED CONTROLS

被引:30
作者
Kunisch, Karl [1 ]
Trautmann, Philip [1 ]
Vexler, Boris [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Tech Univ Munich, Chair Optimal Control, Boltzmannstr 3, D-85748 Garching, Germany
基金
奥地利科学基金会;
关键词
optimal control; sparsity; wave equation; regularity; inverse problem; DIRECTIONAL SPARSITY;
D O I
10.1137/141001366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Measure valued optimal control problems governed by the linear wave equation are analyzed. The space of vector measures M (Omega(C); L-2(I)) is chosen as control space and the corresponding total variation norm as the control cost functional. The support of the controls (sparsity pattern) is time-independent, which is desired in many applications, e.g., inverse problems or optimal actuator placement. New regularity results for the linear wave equation are proven and used to show the well-posedness of the control problem in all three space dimensions. Furthermore first order optimality conditions are derived and structural properties of the optimal control are investigated. Higher regularity of optimal controls in time is shown on the basis of the regularity results for the state. Finally the optimal control problem is used to solve an inverse source problem.
引用
收藏
页码:1212 / 1244
页数:33
相关论文
共 28 条
  • [1] Amann H., 2000, Glas. Mat. Ser., V35, P161
  • [2] [Anonymous], 1973, N HOLLAND MATH STUD
  • [3] Bensoussan A., 2007, REPRESENTATION CONTR, DOI DOI 10.1007/978-0-8176-4581-6
  • [4] Bogachev V.I., 2007, Measure Theory, VII, DOI [DOI 10.1007/978-3-540-34514-5, 10.1007/978-3-540-34514-5]
  • [5] INVERSE PROBLEMS IN SPACES OF MEASURES
    Bredies, Kristian
    Pikkarainen, Hanna Katriina
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) : 190 - 218
  • [6] Brezis H, 2011, UNIVERSITEXT, P1
  • [7] Spike controls for elliptic and parabolic PDEs
    Casas, E.
    Zuazua, E.
    [J]. SYSTEMS & CONTROL LETTERS, 2013, 62 (04) : 311 - 318
  • [8] SPARSE INITIAL DATA IDENTIFICATION FOR PARABOLIC PDE AND ITS FINITE ELEMENT APPROXIMATIONS
    Casas, Eduardo
    Vexler, Boris
    Zuazua, Enrique
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (03) : 377 - 399
  • [9] OPTIMAL CONTROL OF SEMILINEAR ELLIPTIC EQUATIONS IN MEASURE SPACES
    Casas, Eduardo
    Kunisch, Karl
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 339 - 364
  • [10] PARABOLIC CONTROL PROBLEMS IN MEASURE SPACES WITH SPARSE SOLUTIONS
    Casas, Eduardo
    Clason, Christian
    Kunisch, Karl
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) : 28 - 63