Combustion of lean air/fuel mixtures in an inert porous medium provides an efficient way to convert chemical energy of hydrocarbons into thermal energy. The porous medium effectively redistributes the heat allowing the reacting mixture to be preheated before the combustion front. For a lean propane/air mixture (equivalence ratio Phi similar to 0.6), the combustion front is steady and the combustion temperature is subadiabatic. At lower equivalence ratios the heat wave in the porous media and the combustion front can move synchronously downstream developing superadiabatic temperatures. This superadiabatic effect allows to operate at the range of ultralean mixtures (Phi similar to 0.1). Thermal energy generated by the combustion process can be converted into electricity by thermoelectric modules (TEMs). In this work, a cylindrical porous burner is designed to absorb the heat of combustion of lean propane/air mixtures. The burner is inserted in a rectangular steel block. The surface of the block is covered by a set of operating TEMs. Confining the combustion front is stabilized by using porous media with different pore sizes. Temperatures are recorded in different regions of the burner by using surface and immersion thermocouples. Adjusting the equivalence ratio, the flow rate of the gaseous mixture, the properties of the porous media, and the TEM characteristics, a quasi-static burn rate is achieved with the surrounding surface at the nominal temperatures required by the TEMs. The maximum electrical power of 9.42 W and the overall conversion efficiency of 2.93% are reached with a voltage of 5.93 V and a current of 1.59 A using a setup of four TEMs electrically connected in series.
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Wang, Hui
Wang, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Wang, Ning
Wang, Guangshun
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Design Inst Co Ltd, China Power Engn Consulting Grp, Jilin, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Wang, Guangshun
Wang, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Wang, Xiangyu
Liu, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Liu, Xiang
Zhu, Yuxuan
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China