RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

被引:0
|
作者
Ye, Xi [1 ]
Yavuz, Semih [2 ]
Hashimoto, Kazuma [2 ]
Zhou, Yingbo [1 ]
Xiong, Caiming [2 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] Salesforce Res, San Francisco, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior ranking-based approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-of-the-art results on GRAILQA and WEBQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GRAILQA leaderboard. In addition, RnG-KBQA outperforms all prior approaches on the popular WEBQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.(1)
引用
收藏
页码:6032 / 6043
页数:12
相关论文
共 50 条
  • [21] Knowledge Base Question Answering with Topic Units
    Lan, Yunshi
    Wang, Shuohang
    Jiang, Jing
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5046 - 5052
  • [22] A Survey of Question Semantic Parsing for Knowledge Base Question Answering
    Qiu Y.-Q.
    Wang Y.-Z.
    Bai L.
    Yin Z.-Y.
    Shen H.-W.
    Bai S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2242 - 2264
  • [23] Knowledge Base Question Answering With Attentive Pooling for Question Representation
    Wang, Run-Ze
    Ling, Zhen-Hua
    Hu, Yu
    IEEE ACCESS, 2019, 7 : 46773 - 46784
  • [24] Deep Query Ranking for Question Answering over Knowledge Bases
    Zafar, Hamid
    Napolitano, Giulio
    Lehmann, Jens
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 635 - 638
  • [25] Retrieval, Re-ranking and Multi-task Learning for Knowledge-Base Question Answering
    Wang, Zhiguo
    Ng, Patrick
    Nallapati, Ramesh
    Xiang, Bing
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 347 - 357
  • [26] Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base
    Yih, Wen-tau
    Chang, Ming-Wei
    He, Xiaodong
    Gao, Jianfeng
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 1321 - 1331
  • [27] Knowledge Base Question Answering through Recursive Hypergraphs
    Yadati, Naganand
    Dayanidhi, R.
    Vaishnavi, S.
    Indira, S.
    Srinidhi, S.
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 448 - 454
  • [28] Question Answering System based on Diease Knowledge Base
    Wang, Xuan
    Wang, Zhijun
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 351 - 354
  • [29] Geographic Knowledge Base Question Answering over OpenStreetMap
    Yang, Jonghyeon
    Jang, Hanme
    Yu, Kiyun
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (01)
  • [30] Knowledge Base Question Answering via Semantic Analysis
    Liu, Yibo
    Zhang, Haisu
    Zong, Teng
    Wu, Jianping
    Dai, Wei
    ELECTRONICS, 2023, 12 (20)