Regulating Electronic Conductivity at Cathode Interface for Low-Temperature Halide-Based All-Solid-State Batteries

被引:34
作者
Deng, Sixu [1 ]
Jiang, Ming [2 ,6 ]
Chen, Ning [3 ]
Li, Weihan [1 ]
Zheng, Matthew [1 ]
Chen, Weifeng [3 ]
Li, Ruying [1 ]
Huang, Huan [4 ]
Wang, Jiantao [5 ]
Singh, Chandra Veer [6 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[3] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[4] Glabat Solid State Battery Inc, London, ON N6G 4X8, Canada
[5] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[6] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
additives; electronic conductivity; halide electrolytes; low temperature; solid-state batteries;
D O I
10.1002/adfm.202205594
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Halide solid-state batteries (SSBs) show unparalleled application potential because of their outstanding advantages, such as high ionic conductivity and good compatibility with cathodes. However, operating halide SSBs under freezing temperatures faces big challenges, and the underlying degradation mechanisms are unclear. Herein, the impact of electronic conductivity in low-temperature halide SSBs is investigated by designing different additives in the composite cathode. It is shown that the electrochemical stability of a halide electrolyte (Li3InCl6) with additives is significantly affected by the degree of electronic conductivity as well as the ambient operational temperature. When the ambient temperatures are below freezing point, the moderate electronic conductivity in the composite cathode is beneficial toward improving the charge transfer kinetics without inducing the decomposition of Li3InCl6. The electrode materials (LiCoO2 cathode and Li3InCl6 electrolytes) show excellent structural and interfacial stability during electrochemical reactions, resulting in a competitive performance at low temperatures. Stable long-term cycling performance with a capacity retention of 89.2% after 300 cycles is achieved along with a C-rate capacity of 77.6 mAh g(-1) (0.6 C) at -10 degrees C. This in-depth study investigates the role of electronic conductivity, which opens the door to future research on low-temperature SSBs.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Electrochemical behaviors of Li-argyrodite-based all-solid-state batteries under deep-freezing conditions [J].
Choi, Sungjun ;
Jeon, Minjae ;
Kim, Byung-Kook ;
Sang, Byoung-In ;
Kim, Hyoungchul .
CHEMICAL COMMUNICATIONS, 2018, 54 (100) :14116-14119
[2]   Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries [J].
Deng, Sixu ;
Sun, Yipeng ;
Li, Xia ;
Ren, Zhouhong ;
Liang, Jianwen ;
Doyle-Davis, Kieran ;
Liang, Jianneng ;
Li, Weihan ;
Banis, Mohammad Norouzi ;
Sun, Qian ;
Li, Ruying ;
Hu, Yongfeng ;
Huang, Huan ;
Zhang, Li ;
Lu, Shigang ;
Luo, Jun ;
Sun, Xueliang .
ACS ENERGY LETTERS, 2020, 5 (04) :1243-1251
[3]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[4]   Microscopic study of temporally resolved carrier relaxation in carbon nanotubes [J].
Koehler, Christopher ;
Watermann, Tobias ;
Knorr, Andreas ;
Malic, Ermin .
PHYSICAL REVIEW B, 2011, 84 (15)
[5]   Multiphase, Multiscale Chemomechanics at Extreme Low Temperatures: Battery Electrodes for Operation in a Wide Temperature Range [J].
Li, Jizhou ;
Li, Shaofeng ;
Zhang, Yuxin ;
Yang, Yang ;
Russi, Silvia ;
Qian, Guannan ;
Mu, Linqin ;
Lee, Sang-Jun ;
Yang, Zhijie ;
Lee, Jun-Sik ;
Pianetta, Piero ;
Qiu, Jieshan ;
Ratner, Daniel ;
Cloetens, Peter ;
Zhao, Kejie ;
Lin, Feng ;
Liu, Yijin .
ADVANCED ENERGY MATERIALS, 2021, 11 (37)
[6]   Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by In Situ and Operando Synchrotron X-ray Analytical Techniques [J].
Li, Weihan ;
Liang, Jianwen ;
Li, Minsi ;
Adair, Keegan R. ;
Li, Xiaona ;
Hu, Yongfeng ;
Xiao, Qunfeng ;
Feng, Renfei ;
Li, Ruying ;
Zhang, Li ;
Lu, Shigang ;
Huang, Huan ;
Zhao, Shangqian ;
Sham, Tsun-Kong ;
Sun, Xueliang .
CHEMISTRY OF MATERIALS, 2020, 32 (16) :7019-7027
[7]   Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte [J].
Li, Xiaona ;
Liang, Jianwen ;
Chen, Ning ;
Luo, Jing ;
Adair, Keegan R. ;
Wang, Changhong ;
Banis, Mohammad Norouzi ;
Sham, Tsun-Kong ;
Zhang, Li ;
Zhao, Shangqian ;
Lu, Shigang ;
Huang, Huan ;
Li, Ruying ;
Sun, Xueliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) :16427-16432
[8]   Metal Halide Superionic Conductors for All-Solid-State Batteries [J].
Liang, Jianwen ;
Li, Xiaona ;
Adair, Keegan R. ;
Sun, Xueliang .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) :1023-1033
[9]   Site-Occupation-Tuned Superionic LixScCl3+xHalide Solid Electrolytes for All-Solid-State Batteries [J].
Liang, Jianwen ;
Li, Xiaona ;
Wang, Shuo ;
Adair, Keegan R. ;
Li, Weihan ;
Zhao, Yang ;
Wang, Changhong ;
Hu, Yongfeng ;
Zhang, Li ;
Zhao, Shangqian ;
Lu, Shigang ;
Huang, Huan ;
Li, Ruying ;
Mo, Yifei ;
Sun, Xueliang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :7012-7022
[10]   Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature [J].
Lv, Fei ;
Liu, Kexin ;
Wang, Zhuyi ;
Zhu, Jiefang ;
Zhao, Yin ;
Yuan, Shuai .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 596 :257-266