Design of LiFePO4 and porous carbon composites with excellent High-Rate charging performance for Lithium-Ion secondary battery

被引:50
|
作者
Huang, Chen-Yi [1 ]
Kuo, Tsung-Rong [2 ,3 ]
Yougbare, Sibidou [4 ]
Lin, Lu-Yin [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei, Taiwan
[2] Taipei Med Univ, Coll Biomed Engn, Int PhD Program Biomed Engn, Taipei 11031, Taiwan
[3] Taipei Med Univ, Coll Biomed Engn, Grad Inst Nanomed & Med Engn, Taipei 11031, Taiwan
[4] Inst Rech Sci Sante IRSS DRCO Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
关键词
Carbon coating; High-rate; Lithium iron phosphate; Lithium ion battery; Mechanofusion; Super P (R); CATHODE MATERIAL; COATED LIFEPO4; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; IRON PHOSPHATE; PARTICLE-SIZE; IMPROVEMENT; MORPHOLOGY;
D O I
10.1016/j.jcis.2021.09.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium iron phosphate (LFP) is one of the promising cathode materials of lithium ion battery (LIB), but poor electrical conductivity restricts its electrochemical performance. Carbon coating can improve electrical conductivity of LFP without changing its intrinsic property. Uniform coating of carbon on LFP is significant to avoid charge congregation and unpreferable redox reactions. It is the first time to apply the commercial organic binder, Super P (R) (SP), as carbon source to achieve uniform coating on LFP as cathode material of LIB. The simple and economical mechanofusion method is firstly applied to coat different amounts of SP on LFP. The LIB with the cathode material of optimized SP-coated LFP shows the highest capacity of 165.6 mAh/g at 0.1C and 59.8 mAh/g at 10C, indicating its high capacity and excellent high rate charge/discharge capability. SP is applied on other commercial LFP materials, M121 and M23, for carbon coating. Enhanced high-rate charge/discharge capabilities are also achieved for LIB with SP-coated M121 and M23 as cathode materials. This new material and technique for carbon coating is verified to be applicable on different LFP materials. This novel carbon coating method is expected to apply on other cathode materials of LIB with outstanding electrochemical performances. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1465
页数:9
相关论文
共 50 条
  • [21] Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review
    Wu, Haixia
    Liu, Qinjiao
    Guo, Shouwu
    NANO-MICRO LETTERS, 2014, 6 (04) : 316 - 326
  • [22] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [23] Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review
    Haixia Wu
    Qinjiao Liu
    Shouwu Guo
    Nano-Micro Letters, 2014, 6 : 316 - 326
  • [24] Tannic Acid-Derived Carbon Coating on LiFePO4 Nanocrystals Enables High-Rate Cathode Materials for Lithium-Ion Batteries
    Wang, Yanzhuang
    Cui, Cong
    Cheng, Renfei
    Wang, Junchao
    Wang, Xiaohui
    ACS APPLIED NANO MATERIALS, 2023, 6 (11) : 9124 - 9129
  • [25] Synthesis of porous LiFePO4 cathode material by citrate process for lithium ion battery
    Kim, Soomin
    Kim, Ungsoo
    Kim, Jinho
    Cho, Wooseok
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (02) : 145 - 149
  • [26] Hierarchical porous LiFePO4/Carbon composite electrodes for lithium-ion batteries
    Bai, Ningbo
    Xiang, Kaixiong
    Zhou, Wei
    Lu, Huayu
    Chen, Han
    MATERIALS TECHNOLOGY, 2017, 32 (04) : 203 - 209
  • [27] Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries
    Konarova, Muxina
    Taniguchi, Izumi
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3661 - 3667
  • [28] Preparation of carbon and oxide co-modified LiFePO4 cathode material for high performance lithium-ion battery
    Yang, Chun-Chen
    Jang, Jer-Huan
    Jiang, Jia-Rong
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 165 : 196 - 206
  • [29] A lithium-ion battery based on LiFePO4 and silicon nanowires
    Prosini, Pier Paolo
    Cento, Cinzia
    Rufoloni, Alessandro
    Rondino, Flaminia
    Santoni, Antonino
    SOLID STATE IONICS, 2015, 269 : 93 - 97
  • [30] Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process
    Tian, Ruiyuan
    Liu, Haiqiang
    Jiang, Yi
    Chen, Jiankun
    Tan, Xinghua
    Liu, Guangao
    Zhang, Lina
    Gu, Xiaohua
    Guo, Yanjun
    Wang, Hanfu
    Sun, Lianfeng
    Chu, Weiguo
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) : 11377 - 11386