A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy

被引:33
作者
De Jong, Edwin [1 ]
Williams, David S. [2 ,3 ]
Abdelmohsen, Loai K. E. A. [2 ]
Van Hest, Jan C. M. [2 ]
Zuhorn, Inge S. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[2] Eindhoven Univ Technol, Dept Biomed Engn, Dept Chem Engn & Chem, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Swansea Univ, Dept Chem, Swansea SA2 8PP, W Glam, Wales
关键词
Blood-brain barrier; Filter-free BBB model; Transcytosis; Polymersomes; G23; peptide; TRANSMISSION ELECTRON-MICROSCOPY; IN-VITRO; ENDOTHELIAL-CELLS; TRANSCYTOSIS; TRANSPORT; POLYMERSOMES; TOOL;
D O I
10.1016/j.jconrel.2018.09.015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The delivery of therapeutics to the brain is greatly hampered by the blood-brain barrier (BBB). The use of nanoparticles that can cross the BBB via the process of receptor-mediated transcytosis at blood-brain barrier endothelial cells seems a promising strategy to transport therapeutics into the brain. To screen for suitable nanocarriers, and to study the process of transcytosis, a cultured polarized monolayer of brain microvascular endothelial cells on an extracellular matrix-coated porous membrane filter is widely used as an in vitro BBB model. However, due to the adhesion of numerous types of nanoparticles to the membrane filter and within the filter pores, such a model is unsuitable for the quantification of transendothelial delivery of nanoparticles. Hence, there is a pressing need for a filter-free in vitro BBB model. Ideally, the model is inexpensive and easy to use, in order to allow for its wide use in nanomedicine and biology laboratories around the world. Here, we developed a filter-free in vitro BBB model that consists of a collagen gel covered with a monolayer of brain microvascular endothelial (hCMEC/D3) cells. The paracellular leakage of differently sized dextrans and the transcellular transport of LDL were measured to demonstrate the validity of the filter-free model. Finally, the transendothelial delivery of fluorescently-labelled PEG-P(CL-g-TMC) polymersomes that were functionalized with GM1-targeting peptides was assessed by fluorescence spectroscopy measurement of the luminal, cellular, and abluminal parts of the filter-free BBB model. Our data confirm the effectiveness of the G23 peptide to mediate transport of polymersomes across the BBB and the suitability of this filter-free in vitro model for quantification of nanoparticle transcytosis.
引用
收藏
页码:14 / 22
页数:9
相关论文
共 31 条
[1]   A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier [J].
Adriani, Giulia ;
Ma, Dongliang ;
Pavesi, Andrea ;
Kamm, Roger D. ;
Goh, Eyleen L. K. .
LAB ON A CHIP, 2017, 17 (03) :448-459
[2]   Gold Nanocrystal Labeling Allows Low-Density Lipoprotein Imaging from the Subcellular to Macroscopic Level [J].
Allijn, Iris E. ;
Leong, Wei ;
Tang, Jun ;
Gianella, Anita ;
Mieszawska, Aneta J. ;
Fay, Francois ;
Ma, Ge ;
Russell, Stewart ;
Callo, Catherine B. ;
Gordon, Ronald E. ;
Korkmaz, Emine ;
Post, Jan Andries ;
Zhao, Yiming ;
Gerritsen, Hans C. ;
Thran, Axel ;
Proksa, Roland ;
Daerr, Heiner ;
Storm, Gert ;
Fuster, Valentin ;
Fisher, Edward A. ;
Fayad, Zahi A. ;
Mulder, Willem J. M. ;
Cormode, David P. .
ACS NANO, 2013, 7 (11) :9761-9770
[3]   Limitations of the hCMEC/D3 Cell Line as a Model for Aβ Clearance by the Human Blood-brain Barrier [J].
Biemans, Elisanne A. L. M. ;
Jakel, Lieke ;
de Waal, Robert M. W. ;
Kuiperij, H. Bea ;
Verbeek, Marcel M. .
JOURNAL OF NEUROSCIENCE RESEARCH, 2017, 95 (07) :1513-1522
[4]   Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor [J].
Brown, Jacquelyn A. ;
Pensabene, Virginia ;
Markov, Dmitry A. ;
Allwardt, Vanessa ;
Neely, M. Diana ;
Shi, Mingjian ;
Britt, Clayton M. ;
Hoilett, Orlando S. ;
Yang, Qing ;
Brewer, Bryson M. ;
Samson, Philip C. ;
McCawley, Lisa J. ;
May, James M. ;
Webb, Donna J. ;
Li, Deyu ;
Bowman, Aaron B. ;
Reiserer, Ronald S. ;
Wikswo, John P. .
BIOMICROFLUIDICS, 2015, 9 (05)
[5]   Physiological Pathway for Low-Density Lipoproteins across the Blood-Brain Barrier: Transcytosis through Brain Capillary Endothelial Cells In Vitro [J].
Candela, Pietra ;
Gosselet, Fabien ;
Miller, Florence ;
Buee-Scherrer, Valerie ;
Torpier, Gerard ;
Cecchelli, Romeo ;
Fenart, Laurence .
ENDOTHELIUM-JOURNAL OF ENDOTHELIAL CELL RESEARCH, 2008, 15 (5-6) :254-264
[6]   In vitro placental model optimization for nanoparticle transport studies [J].
Cartwright, Laura ;
Poulsen, Marie Sonnegaard ;
Nielsen, Hanne Morck ;
Pojana, Giulio ;
Knudsen, Lisbeth E. ;
Saunders, Margaret ;
Rytting, Erik .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 :497-510
[7]   The Molecular Constituents of the Blood-Brain Barrier [J].
Chow, Brian Wai ;
Gu, Chenghua .
TRENDS IN NEUROSCIENCES, 2015, 38 (10) :598-608
[8]   A new function for the LDL receptor: Transcytosis of LDL across the blood-brain barrier [J].
Dehouck, B ;
Fenart, L ;
Dehouck, MP ;
Pierce, A ;
Torpier, G ;
Cecchelli, R .
JOURNAL OF CELL BIOLOGY, 1997, 138 (04) :877-889
[9]   Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport [J].
Fang, Fei ;
Zou, Dan ;
Wang, Wei ;
Yin, Ying ;
Yin, Tieying ;
Hao, Shilei ;
Wang, Bochu ;
Wang, Guixue ;
Wang, Yazhou .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 76 :1316-1327
[10]  
Georgieva Julia V, 2014, Pharmaceutics, V6, P557, DOI 10.3390/pharmaceutics6040557