On-demand Injection of Lexical Knowledge for Recognising Textual Entailment

被引:0
|
作者
Martinez-Gomez, Pascual [1 ]
Mineshima, Koji [2 ]
Miyao, Yusuke [1 ,3 ,4 ,5 ]
Bekki, Daisuke [1 ,2 ,3 ,4 ]
机构
[1] AIST, Artificial Intelligence Res Ctr, Tokyo, Japan
[2] Ochanomizu Univ, Tokyo, Japan
[3] PRESTO, Natl Inst Informat, Tokyo, Japan
[4] PRESTO, JST, Tokyo, Japan
[5] Grad Univ Adv Studies SOKENDAI, Tokyo, Japan
来源
15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS | 2017年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We approach the recognition of textual entailment using logical semantic representations and a theorem prover. In this setup, lexical divergences that preserve semantic entailment between the source and target texts need to be explicitly stated. However, recognising subsentential semantic relations is not trivial. We address this problem by monitoring the proof of the theorem and detecting unprovable sub-goals that share predicate arguments with logical premises. If a linguistic relation exists, then an appropriate axiom is constructed on-demand and the theorem proving continues. Experiments show that this approach is effective and precise, producing a system that outperforms other logicbased systems and is competitive with state-of-the-art statistical methods.
引用
收藏
页码:710 / 720
页数:11
相关论文
共 50 条
  • [1] A knowledge based strategy for recognising textual entailment
    Ferrandez, Oscar
    Terol, Rafael M.
    Munoz, Rafael
    Martinez-Barco, Patricio
    Palomar, Manuel
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2006, 4188 : 53 - 60
  • [2] The PASCAL recognising textual entailment challenge
    Dagan, Ido
    Glickman, Oren
    Magnini, Bernardo
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 177 - 190
  • [3] Recognising textual entailment with robust logical inference
    Bos, Johan
    Markert, Katja
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 404 - 426
  • [4] A Probabilistic Lexical Approach to Textual Entailment
    Glickman, Oren
    Dagan, Ido
    Koppel, Moshe
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1682 - 1683
  • [5] SPARTE, a test suite for recognising textual entailment in Spanish
    Peñas, A
    Rodrigo, A
    Verdejo, F
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2006, 3878 : 275 - 286
  • [6] A lexical alignment model for probabilistic textual entailment
    Glickman, Oren
    Dagan, Ido
    Koppel, Moshe
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 287 - 298
  • [7] DLSITE-1:: Lexical analysis for solving textual entailment recognition
    Ferrandez, Oscar
    Micol, Daniel
    Munoz, Rafael
    Palomar, Manuel
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PROCEEDINGS, 2007, 4592 : 284 - +
  • [8] Combining Lexical Resources with Fuzzy Set Theory for Recognizing Textual Entailment
    Feng, Jin
    Zhou, Yiming
    Martin, Trevor
    ISBIM: 2008 INTERNATIONAL SEMINAR ON BUSINESS AND INFORMATION MANAGEMENT, VOL 2, 2009, : 54 - +
  • [9] Combining lexical resources with tree edit distance for recognizing textual entailment
    Kouylekov, Milen
    Magnini, Bernardo
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 217 - 230
  • [10] A Textual Entailment Recognition Method Fused with Language Knowledge
    Liu, Yalei
    Mu, Lingling
    Chu, Wenyan
    Zan, Hongying
    CHINESE LEXICAL SEMANTICS, CLSW 2021, PT I, 2022, 13249 : 440 - 451