Exact model reduction by a slow-fast decomposition of nonlinear mechanical systems

被引:47
作者
Haller, George [1 ]
Ponsioen, Sten [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Mech Syst, Leonhardstr 21, CH-8092 Zurich, Switzerland
关键词
Model reduction; Invariant manifolds; Slow-fast systems; SINGULAR PERTURBATION-THEORY; INVARIANT MANIFOLD APPROACH; DYNAMICS; OSCILLATORS; EQUATIONS;
D O I
10.1007/s11071-017-3685-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We derive conditions under which a general nonlinear mechanical system can be exactly reduced to a lower-dimensional model that involves only the softer degrees of freedom. This slow-fast decomposition (SFD) enslaves exponentially fast the stiffer degrees of freedom to the softer ones as all oscillations converge to the reduced model defined on a slow manifold. We obtain an expression for the domain boundary beyond which the reduced model ceases to be relevant due to a generic loss of stability of the slow manifold. We also find that near equilibria, the SFD gives a mathematical justification for two modal reduction methods used in structural dynamics: static condensation and modal derivatives. These formal reduction procedures, however, are also found to return incorrect results when the SFD conditions do not hold. We illustrate all these results on mechanical examples.
引用
收藏
页码:617 / 647
页数:31
相关论文
共 28 条
[1]   A MULTISCALE TECHNIQUE FOR FINDING SLOW MANIFOLDS OF STIFF MECHANICAL SYSTEMS [J].
Ariel, G. ;
Sanz-Serna, J. M. ;
Tsai, R. .
MULTISCALE MODELING & SIMULATION, 2012, 10 (04) :1180-1203
[2]  
Arnol'd VI., 1992, CATASTROPHE THEORY
[3]   A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems [J].
Benner, Peter ;
Gugercin, Serkan ;
Willcox, Karen .
SIAM REVIEW, 2015, 57 (04) :483-531
[4]   A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control [J].
Besselink, B. ;
Tabak, U. ;
Lutowska, A. ;
van de Wouw, N. ;
Nijmeijer, H. ;
Rixen, D. J. ;
Hochstenbach, M. E. ;
Schilders, W. H. A. .
JOURNAL OF SOUND AND VIBRATION, 2013, 332 (19) :4403-4422
[5]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[6]  
Carr J., 1982, APPL CTR MANIFOLD TH, DOI DOI 10.1007/978-1-4612-5929-9
[8]   An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators [J].
Georgiou, IT ;
Vakakis, AF .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (06) :871-886
[9]   Dynamics of large scale coupled structural mechanical systems: A singular perturbation proper orthogonal decomposition approach [J].
Georgiou, IT ;
Schwartz, IB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (04) :1178-1207
[10]   The slow invariant manifold of a conservative pendulum-oscillator system [J].
Georgiou, IT ;
Schwartz, IB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04) :673-692