Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions

被引:63
作者
Betts, Matthew J. [1 ,2 ]
Lu, Qianhao [1 ,2 ]
Jiang, YingYing [1 ,2 ]
Drusko, Armin [1 ,2 ]
Wichmann, Oliver [1 ,2 ]
Utz, Mathias [1 ,2 ]
Valtierra-Gutierrez, Ilse A. [1 ,2 ]
Schlesner, Matthias [3 ]
Jaeger, Natalie [3 ]
Jones, David T. [3 ]
Pfister, Stefan [3 ]
Lichter, Peter [3 ]
Eils, Roland [2 ,3 ,4 ]
Siebert, Reiner [5 ]
Bork, Peer [6 ]
Apic, Gordana [1 ,2 ,7 ]
Gavin, Anne-Claude [6 ]
Russell, Robert B. [1 ,2 ]
机构
[1] Heidelberg Univ, Cell Networks, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Bioquant, D-69120 Heidelberg, Germany
[3] Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Dept Bioinformat & Funct Genom, Inst Pharm & Mol Biotechnol, D-69120 Heidelberg, Germany
[5] Univ Kiel, Univ Klinikum Schleswig Holstein, Inst Humangenet, D-24105 Kiel, Germany
[6] EMBL, D-69117 Heidelberg, Germany
[7] Cambridge Cell Networks Ltd, St Johns Innovat Ctr, Cambridge CB3 0WS, England
关键词
INTERACTION DATABASE; STRUCTURAL CLASSIFICATION; PROTEIN; GENOME; NETWORKS; RECOGNITION; BINDING; GROWTH; SITES; SCOP;
D O I
10.1093/nar/gku1094
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systematic interrogation of mutation or protein modification data is important to identify sites with functional consequences and to deduce global consequences from large data sets. Mechismo (mechismo.russellab.org) enables simultaneous consideration of thousands of 3D structures and biomolecular interactions to predict rapidly mechanistic consequences for mutations and modifications. As useful functional information often only comes from homologous proteins, we benchmarked the accuracy of predictions as a function of protein/structure sequence similarity, which permits the use of relatively weak sequence similarities with an appropriate confidence measure. For protein-protein, protein-nucleic acid and a subset of protein-chemical interactions, we also developed and benchmarked a measure of whether modifications are likely to enhance or diminish the interactions, which can assist the detection of modifications with specific effects. Analysis of high-throughput sequencing data shows that the approach can identify interesting differences between cancers, and application to proteomics data finds potential mechanistic insights for how post-translational modifications can alter biomolecular interactions.
引用
收藏
页数:11
相关论文
共 63 条
  • [1] Adzhubei Ivan, 2013, Curr Protoc Hum Genet, VChapter 7, DOI 10.1002/0471142905.hg0720s76
  • [2] Structure-based assembly of protein complexes in yeast
    Aloy, P
    Böttcher, B
    Ceulemans, H
    Leutwein, C
    Mellwig, C
    Fischer, S
    Gavin, AC
    Bork, P
    Superti-Furga, G
    Serrano, L
    Russell, RB
    [J]. SCIENCE, 2004, 303 (5666) : 2026 - 2029
  • [3] The relationship between sequence and interaction divergence in proteins
    Aloy, P
    Ceulemans, H
    Stark, A
    Russell, RB
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (05) : 989 - 998
  • [4] Interrogating protein interaction networks through structural biology
    Aloy, P
    Russell, RB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) : 5896 - 5901
  • [5] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [6] Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand
    Anderson, J
    Burns, HD
    Enriquez-Harris, P
    Wilkie, AOM
    Heath, JK
    [J]. HUMAN MOLECULAR GENETICS, 1998, 7 (09) : 1475 - 1483
  • [7] Data growth and its impact on the SCOP database: new developments
    Andreeva, Antonina
    Howorth, Dave
    Chandonia, John-Marc
    Brenner, Steven E.
    Hubbard, Tim J. P.
    Chothia, Cyrus
    Murzin, Alexey G.
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D419 - D425
  • [8] [Anonymous], 1993, NACCESS COMPUT PROGR
  • [9] Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
  • [10] PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
    Bendl, Jaroslav
    Stourac, Jan
    Salanda, Ondrej
    Pavelka, Antonin
    Wieben, Eric D.
    Zendulka, Jaroslav
    Brezovsky, Jan
    Damborsky, Jiri
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (01)