IMPULSE CONTROL OF MULTIDIMENSIONAL JUMP DIFFUSIONS

被引:57
作者
Davis, Mark H. A. [1 ]
Guo, Xin [2 ]
Wu, Guoliang [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
controlled jump-diffusion; viscosity solution; quasi-variational inequality; regularity; VISCOSITY SOLUTIONS; STOCHASTIC-CONTROL; AMERICAN OPTIONS; SINGULAR CONTROL; FREE-BOUNDARY; SMOOTH FIT; PRINCIPLE; PORTFOLIO; POLICIES; PRICE;
D O I
10.1137/090780419
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies regularity properties of the value function for an infinite-horizon discounted cost impulse control problem, where the underlying controlled process is a multidimensional jump diffusion with possibly "infinite-activity" jumps. Surprisingly, despite these jumps, we obtain the same degree of regularity as for the diffusion case, at least when the jump satisfies certain integrability conditions.
引用
收藏
页码:5276 / 5293
页数:18
相关论文
共 51 条
[1]  
[Anonymous], 1979, Controlled Stochastic Processes
[2]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[3]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[4]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[5]  
[Anonymous], 1984, IMPULSE CONTROL QUAS
[6]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[7]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[8]   ANALYSIS OF THE OPTIMAL EXERCISE BOUNDARY OF AMERICAN OPTIONS FOR JUMP DIFFUSIONS [J].
Bayraktar, Erhan ;
Xing, Hao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (02) :825-860
[9]  
Bielecki T., 2000, FINANC STOCH, V4, P1
[10]  
BONY JM, 1967, CR ACAD SCI A MATH, V265, P333