IMPULSE CONTROL OF MULTIDIMENSIONAL JUMP DIFFUSIONS

被引:56
|
作者
Davis, Mark H. A. [1 ]
Guo, Xin [2 ]
Wu, Guoliang [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
controlled jump-diffusion; viscosity solution; quasi-variational inequality; regularity; VISCOSITY SOLUTIONS; STOCHASTIC-CONTROL; AMERICAN OPTIONS; SINGULAR CONTROL; FREE-BOUNDARY; SMOOTH FIT; PRINCIPLE; PORTFOLIO; POLICIES; PRICE;
D O I
10.1137/090780419
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies regularity properties of the value function for an infinite-horizon discounted cost impulse control problem, where the underlying controlled process is a multidimensional jump diffusion with possibly "infinite-activity" jumps. Surprisingly, despite these jumps, we obtain the same degree of regularity as for the diffusion case, at least when the jump satisfies certain integrability conditions.
引用
收藏
页码:5276 / 5293
页数:18
相关论文
共 50 条