Scalable graphene production from ethanol decomposition by microwave argon plasma torch

被引:55
作者
Melero, C. [1 ]
Rincon, R. [1 ]
Munoz, J. [1 ]
Zhang, G. [2 ]
Sun, S. [2 ]
Perez, A. [3 ]
Royuela, O. [3 ]
Gonzalez-Gago, C. [1 ]
Calzada, M. D. [1 ]
机构
[1] Univ Cordoba, Lab Innovac Plasmas LIPs, Edificio Einstein C2,Campus Rabanales, E-14071 Cordoba, Spain
[2] INRS, Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Iberfluid Instruments SA, C Bot 122, E-08908 Barcelona, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
graphene; plasma; microwave; TIAGO; ethanol; catalyst-free; CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; SUR-GUIDE-DONDES; ATMOSPHERIC-PRESSURE; HYDROGEN-PRODUCTION; RAMAN-SPECTROSCOPY; CARBON NANOTUBES; GRAPHITE OXIDE; HIGH-QUALITY; THERMODYNAMIC-EQUILIBRIUM;
D O I
10.1088/1361-6587/aa8480
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.
引用
收藏
页数:10
相关论文
共 82 条
  • [1] Aryal H R, 2016, MATER, V3, P11009
  • [2] CAVITY FOR MICROWAVE-INDUCED PLASMAS OPERATED IN HELIUM AND ARGON AT ATMOSPHERIC-PRESSURE
    BEENAKKER, CIM
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1976, 31 (8-9) : 483 - 486
  • [3] Boer HJ, 1996, SOLID STATE TECHNOL, V39, P149
  • [4] Graphene formation on step-free 4H-SiC(0001)
    Bolen, M. L.
    Colby, R.
    Stach, E. A.
    Capano, M. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
  • [5] Hydrogen production from methanol reforming in microwave "tornado"-type plasma
    Bundaleska, N.
    Tsyganov, D.
    Saavedra, R.
    Tatarova, E.
    Dias, F. M.
    Ferreira, C. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9145 - 9157
  • [6] Influence of the thermodynamic equilibrium state in the excitation of samples by a plasma at atmospheric pressure
    Calzada, MD
    García, MC
    Luque, JM
    Santiago, I
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) : 2269 - 2275
  • [7] Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons
    Campos-Delgado, Jessica
    Romo-Herrera, Jose Manuel
    Jia, Xiaoting
    Cullen, David A.
    Muramatsu, Hiroyuki
    Kim, Yoong Ahm
    Hayashi, Takuya
    Ren, Zhifeng
    Smith, David J.
    Okuno, Yu
    Ohba, Tomonori
    Kanoh, Hirofumi
    Kaneko, Katsumi
    Endo, Morinobu
    Terrones, Humberto
    Dresselhaus, Mildred S.
    Terrones, Mauriclo
    [J]. NANO LETTERS, 2008, 8 (09) : 2773 - 2778
  • [8] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [9] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [10] Raman fingerprint of charged impurities in graphene
    Casiraghi, C.
    Pisana, S.
    Novoselov, K. S.
    Geim, A. K.
    Ferrari, A. C.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)