A novel mutation differential evolution for global optimization

被引:21
作者
Yu, Xiaobing [1 ,2 ,3 ]
Cai, Mei [2 ,3 ]
Cao, Jie [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, China Inst Mfg Dev, Nanjing 210044, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Econ & Management, Nanjing 210044, Jiangsu, Peoples R China
关键词
Evolutionary algorithm; global optimization; differential evolution; DE/best/2; particle swarm optimization; PARTICLE SWARM; PARAMETERS; ALGORITHM;
D O I
10.3233/IFS-141388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The success of DE in solving a specific problem crucially depends on appropriately choosing generation strategies and control parameter values. A novel mutation DE (MDE) is proposed to improve generation strategy DE/best/2. Adaptive mutation is conducted to current population when the population clusters around local optima. Control parameters are adapted based on constants. The performance of MDE is extensively evaluated on eighteen benchmark functions and compares favorably with the several DE variants.
引用
收藏
页码:1047 / 1060
页数:14
相关论文
共 40 条
[1]   Improving the performance of differential evolution algorithm using Cauchy mutation [J].
Ali, Musrrat ;
Pant, Millie .
SOFT COMPUTING, 2011, 15 (05) :991-1007
[2]  
Babu BV, 2003, IEEE C EVOL COMPUTAT, P2696
[3]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[4]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[5]  
Esquivel SC, 2003, IEEE C EVOL COMPUTAT, P1130
[6]  
Gamperle R., 2002, ADV INTELL SYST FUZZ, V10, P293
[7]   Moving object detection using Markov Random Field and Distributed Differential Evolution [J].
Ghosh, Ashish ;
Mondal, Ajoy ;
Ghosh, Susmita .
APPLIED SOFT COMPUTING, 2014, 15 :121-+
[8]  
Iorio AW, 2004, LECT NOTES ARTIF INT, V3339, P861
[9]  
Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493
[10]   Evolutionary programming using mutations based on the Levy probability distribution [J].
Lee, CY ;
Yao, X .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (01) :1-13