A version of Orlicz-Pettis Theorem for quasi-homogeneous operator space

被引:4
作者
Chen, Aihong [1 ]
Li, Ronglu [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 1500001, Peoples R China
关键词
Orlicz-Pettis Theorem; Quasi-homogeneous operator; Multiplier convergent series; Full invariant; INVARIANTS;
D O I
10.1016/j.jmaa.2010.06.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A version of Orlicz-Pettis Theorem is established for multiplier convergent series and quasi-homogeneous operator. Applications to spaces of quasi-homogeneous operators are given. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 11 条
[1]  
[Anonymous], 1969, Grundlehren Math. Wiss.
[2]   Invariants in abstract mapping pairs [J].
Li, RL ;
Wang, JM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 :369-381
[3]   Operator matrices on topological vector spaces [J].
Li, RL ;
Kang, SM ;
Swartz, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) :645-658
[4]  
Li RL, 2002, INDIAN J PURE AP MAT, V33, P171
[5]  
LI RL, 1992, J HARBIN I TECHNOLOG, V24, P107
[6]   A general Orlicz-Pettis theorem [J].
Li, Ronglu ;
Yang, Yunyan ;
Swartz, Charles .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (01) :47-60
[7]  
Swartz C, 2009, MULTIPLIER CONVERGEN
[8]  
SWARTZ C, 1996, INFINITE MATRICES GL
[9]   A bilinear Orlicz-Pettis Theorem [J].
Swartz, Charles .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) :332-337
[10]  
Wilansky A., 1978, Modern Methods in Topological Vector Spaces