Evaluation of Algorithm Performance in ChIP-Seq Peak Detection

被引:185
|
作者
Wilbanks, Elizabeth G. [1 ,3 ]
Facciotti, Marc T. [1 ,2 ,3 ]
机构
[1] Univ Calif Davis, Grad Grp Microbiol, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[3] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
来源
PLOS ONE | 2010年 / 5卷 / 07期
基金
美国国家科学基金会;
关键词
FACTOR-BINDING SITES; GENOME-WIDE IDENTIFICATION; CHROMATIN-IMMUNOPRECIPITATION; MODEL; DECONVOLUTION; PROFILES; NETWORK; TOOL; MAP;
D O I
10.1371/journal.pone.0011471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Next-generation DNA sequencing coupled with chromatin immunoprecipitation (ChIP-seq) is revolutionizing our ability to interrogate whole genome protein-DNA interactions. Identification of protein binding sites from ChIP-seq data has required novel computational tools, distinct from those used for the analysis of ChIP-Chip experiments. The growing popularity of ChIP-seq spurred the development of many different analytical programs (at last count, we noted 31 open source methods), each with some purported advantage. Given that the literature is dense and empirical benchmarking challenging, selecting an appropriate method for ChIP-seq analysis has become a daunting task. Herein we compare the performance of eleven different peak calling programs on common empirical, transcription factor datasets and measure their sensitivity, accuracy and usability. Our analysis provides an unbiased critical assessment of available technologies, and should assist researchers in choosing a suitable tool for handling ChIP-seq data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Differential ATAC-seq and ChIP-seq peak detection using ROTS
    Faux, Thomas
    Rytkonen, Kalle T.
    Mahmoudian, Mehrad
    Paulin, Niklas
    Junttila, Sini
    Laiho, Asta
    Elo, Laura L.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (03)
  • [2] Peak Detection on ChIP-Seq Data Using Wavelet Transformation
    Wu, Heng-Yi
    Zhang, Jie
    Huang, Kun
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 555 - 560
  • [3] The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding
    Karl Kornacker
    Morten Beck Rye
    Tony Håndstad
    Finn Drabløs
    BMC Bioinformatics, 13
  • [4] The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding
    Kornacker, Karl
    Rye, Morten Beck
    Handstad, Tony
    Drablos, Finn
    BMC BIOINFORMATICS, 2012, 13
  • [5] COPAR: A ChIP-Seq Optimal Peak Analyzer
    Tang, Binhua
    Wang, Xihan
    Jin, Victor X.
    BIOMED RESEARCH INTERNATIONAL, 2017, 2017
  • [6] Combining multiple ChIP-seq peak detection systems using combinatorial fusion
    Christina Schweikert
    Stuart Brown
    Zuojian Tang
    Phillip R Smith
    D Frank Hsu
    BMC Genomics, 13
  • [7] Combining multiple ChIP-seq peak detection systems using combinatorial fusion
    Schweikert, Christina
    Brown, Stuart
    Tang, Zuojian
    Smith, Phillip R.
    Hsu, D. Frank
    BMC GENOMICS, 2012, 13
  • [8] Shape-based peak identification for ChIP-Seq
    Hower, Valerie
    Evans, Steven N.
    Pachter, Lior
    BMC BIOINFORMATICS, 2011, 12
  • [9] Shape-based peak identification for ChIP-Seq
    Valerie Hower
    Steven N Evans
    Lior Pachter
    BMC Bioinformatics, 12
  • [10] Normalization, bias correction, and peak calling for ChIP-seq
    Diaz, Aaron
    Park, Kiyoub
    Lim, Daniel A.
    Song, Jun S.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (03)