Bogdanov-Takens Bifurcation of a Class of Delayed Reaction-Diffusion System

被引:6
作者
Cao, Jianzhi [1 ]
Wang, Peiguang [1 ]
Yuan, Rong [2 ]
Mei, Yingying [2 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 06期
基金
中国国家自然科学基金;
关键词
Reaction-diffusion; Bogdanov-Takens singularity; delay; normal form; codimension two bifurcation; PREDATOR-PREY SYSTEM; DIFFERENTIAL-EQUATIONS; NORMAL FORMS;
D O I
10.1142/S0218127415500820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of reaction-diffusion system with Neumann boundary condition is considered. By analyzing the generalized eigenvector associated with zero eigenvalue, an equivalent condition for the determination of Bogdonov-Takens (B-T) singularity is obtained. Next, by using center manifold theorem and normal form method, we have a two-dimension ordinary differential system on its center manifold. Finally, two examples show that the given algorithm is effective.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
[Anonymous], FIELDS I COMMUN
[2]  
[Anonymous], 1975, Funct. Anal. Appl, DOI DOI 10.1007/BF01075453
[3]  
[Anonymous], 1974, I HAUTES ETUDES SCI, DOI DOI 10.1007/BF02684366
[4]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS AND APPLICATIONS TO BOGDANOV-TAKENS SINGULARITY [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :201-224
[7]  
Hale JK, 1993, Applied mathematical sciences, V99
[8]   BIFURCATIONS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE [J].
Hu, Zhixing ;
Bi, Ping ;
Ma, Wanbiao ;
Ruan, Shigui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01) :93-112
[9]   Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback [J].
Jiang, Weihua ;
Yuan, Yuan .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (02) :149-161
[10]   Bifurcation analysis of a predator-prey system with generalised Holling type III functional response [J].
Lamontagne, Yann ;
Coutu, Caroline ;
Rousseau, Christiane .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (03) :535-571