SegFlow: Joint Learning for Video Object Segmentation and Optical Flow

被引:343
作者
Cheng, Jingchun [1 ,2 ]
Tsai, Yi-Hsuan [2 ,4 ]
Wang, Shengjin [1 ]
Yang, Ming-Hsuan [2 ,3 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Univ Calif Merced, Merced, CA USA
[3] NVIDIA Res, Santa Clara, CA USA
[4] NEC Labs Amer, Princeton, NJ USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2017年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICCV.2017.81
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an end-to-end trainable network, SegFlow, for simultaneously predicting pixel-wise object segmentation and optical flow in videos. The proposed SegFlow has two branches where useful information of object segmentation and optical flow is propagated bi-directionally in a unified framework. The segmentation branch is based on a fully convolutional network, which has been proved effective in image segmentation task, and the optical flow branch takes advantage of the FlowNet model. The unified framework is trained iteratively offline to learn a generic notion, and fine-tuned online for specific objects. Extensive experiments on both the video object segmentation and optical flow datasets demonstrate that introducing optical flow improves the performance of segmentation and vice versa, against the state-of-the-art algorithms.
引用
收藏
页码:686 / 695
页数:10
相关论文
共 46 条
[1]   Jump: Virtual Reality Video [J].
Anderson, Robert ;
Gallup, David ;
Barron, Jonathan T. ;
Kontkanen, Janne ;
Snavely, Noah ;
Hernandez, Carlos ;
Agarwal, Sameer ;
Seitz, Steven M. .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[2]  
[Anonymous], ICML
[3]  
[Anonymous], 2007, ICCV
[4]  
Bao L., 2014, CVPR
[5]   Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation [J].
Brox, Thomas ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :500-513
[6]  
Brox T, 2010, LECT NOTES COMPUT SC, V6315, P282, DOI 10.1007/978-3-642-15555-0_21
[7]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[8]   One-Shot Video Object Segmentation [J].
Caelles, S. ;
Maninis, K. -K. ;
Pont-Tuset, J. ;
Leal-Taixe, L. ;
Cremers, D. ;
Van Gool, L. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5320-5329
[9]   Topology-Constrained Layered Tracking with Latent Flow [J].
Chang, Jason ;
Fisher, John W., III .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :161-168
[10]   RFM-BASED BLOCK ADJUSTMENT FOR SPACEBORNE IMAGES WITH WEAK CONVERGENCE GEOMETRY [J].
Cheng, C. Q. ;
Zhang, J. X. ;
Huang, G. M. .
IWIDF 2015, 2015, 47 (W4) :1-6