Investigating the mechanism of Xian-ling-lian-xia-fang for inhibiting vasculogenic mimicry in triple negative breast cancer via blocking VEGF/MMPs pathway

被引:14
作者
Li, Feifei [1 ]
Shi, Youyang [1 ]
Zhang, Yang [1 ]
Yang, Xiaojuan [1 ]
Wang, Yi [1 ]
Jiang, Kexin [1 ]
Hua, Ciyi [1 ]
Wu, Chunyu [1 ]
Sun, Chenping [1 ]
Qin, Yuenong [1 ]
Liu, Sheng [1 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Longhua Hosp, Integrated Tradit Chinese & Western Med Breast De, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
Chinese medicine decoction; Triple-negative breast cancer; Vascular mimicry; Network pharmacology; Experimental validation; NEOADJUVANT CHEMOTHERAPY; NETWORK PHARMACOLOGY; BEVACIZUMAB; INVASION; CELLS; CYCLOPHOSPHAMIDE; CARBOPLATIN; COMBINATION; KAEMPFEROL; SURVIVAL;
D O I
10.1186/s13020-022-00597-5
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Background Xian-ling-lian-xia-fang (XLLXF), a Chinese medicine decoction, is widely used in the treatment of triple negative breast cancer (TNBC). However, the underlying mechanism of XLLXF in TNBC treatment has not been totally elucidated. Methods Here, network pharmacology and molecular docking were used to explore the mechanism of Traditional Chinese medicine in the treatment of TNBC. Then, biological experiments were integrated to verify the results of network pharmacology. Results Network pharmacology showed that the candidate active ingredients mainly included quercetin, kaempferol, stigmasterol, and beta-sitosterol through the "XLLXF-active ingredients-targets" network. Vascular endothelial growth factor A (VEGFA) and matrix metalloproteinase (MMP) 2 were the potential therapeutic targets obtained through the protein-protein interaction (PPI) network. Molecular docking confirmed that quercetin, kaempferol, stigmasterol, and beta-sitosterol could stably combine with VEGFA and MMP2. Experimental verification showed that XLLXF could inhibit proliferation, colony ability, and vasculogenic mimicry (VM) formation and promote cell apoptosis in TNBC. Laser confocal microscopy found that XLLXF impaired F-actin cytoskeleton organization and inhibited epithelial mesenchymal transition. Animal experiments also found that XLLXF could inhibit tumor growth and VM formation in TNBC xenograft model. Western blot analysis and immunohistochemical staining showed that XLLXF inhibited the protein expression of VEGFA, MMP2, MMP9, Vimentin, VE-cadherin, and Twist1 and increased that of E-cadherin, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-3 in vitro and in vivo. Conclusions Integrating the analysis of network pharmacology and experimental validation revealed that XLLXF could inhibit VM formation via downregulating the VEGF/MMPs signaling pathway.
引用
收藏
页数:20
相关论文
共 59 条
[1]   Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity [J].
Andima, Moses ;
Costabile, Gabriella ;
Isert, Lorenz ;
Ndakala, Albert J. ;
Derese, Solomon ;
Merkel, Olivia M. .
PHARMACEUTICS, 2018, 10 (04)
[2]   An Overview of Vasculogenic Mimicry in Breast Cancer [J].
Andonegui-Elguera, Marco A. ;
Alfaro-Mora, Yair ;
Caceres-Gutierrez, Rodrigo ;
Caro-Sanchez, Claudia Haydee Sarai ;
Herrera, Luis A. ;
Diaz-Chavez, Jose .
FRONTIERS IN ONCOLOGY, 2020, 10
[3]   Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L [J].
Ayaz, Muhammad ;
Sadiq, Abdul ;
Wadood, Abdul ;
Junaid, Muhammad ;
Ullah, Farhat ;
Khan, Nadir Zaman .
STEROIDS, 2019, 141 :30-35
[4]   Stigmasterol Causes Ovarian Cancer Cell Apoptosis by Inducing Endoplasmic Reticulum and Mitochondrial Dysfunction [J].
Bae, Hyocheol ;
Song, Gwonhwa ;
Lim, Whasun .
PHARMACEUTICS, 2020, 12 (06)
[5]   Bevacizumab Added to Neoadjuvant Chemotherapy for Breast Cancer [J].
Bear, Harry D. ;
Tang, Gong ;
Rastogi, Priya ;
Geyer, Charles E., Jr. ;
Robidoux, Andre ;
Atkins, James N. ;
Baez-Diaz, Luis ;
Brufsky, Adam M. ;
Mehta, Rita S. ;
Fehrenbacher, Louis ;
Young, James A. ;
Senecal, Francis M. ;
Gaur, Rakesh ;
Margolese, Richard G. ;
Adams, Paul T. ;
Gross, Howard M. ;
Costantino, Joseph P. ;
Swain, Sandra M. ;
Mamounas, Eleftherios P. ;
Wolmark, Norman .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (04) :310-320
[6]   Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37298 women with early breast cancer in 26 randomised trials [J].
Boddington, C. ;
Bradley, R. ;
Braybrooke, J. ;
Burrett, J. ;
Clarke, M. ;
Davies, C. ;
Davies, L. ;
Dodwell, D. ;
Duane, F. ;
Evans, V. ;
Gettins, L. ;
Godwin, J. ;
Gray, R. ;
Hills, R. ;
James, S. ;
Liu, H. ;
Liu, Z. ;
MacKinnon, E. ;
Mannu, G. ;
McGale, P. ;
McHugh, T. ;
Morris, P. ;
Pan, H. ;
Peto, R. ;
Read, S. ;
Taylor, C. ;
Wang, Y. ;
Wang, Z. ;
Bradley, R. ;
Braybrooke, J. ;
Gray, R. ;
Bergh, J. ;
Peto, R. ;
Gray, Richard ;
Bradley, Rosie ;
Braybrooke, Jeremy ;
Liu, Zulian ;
Peto, Richard ;
Davies, Lucy ;
Dodwell, David ;
McGale, Paul ;
Pan, Hongchao ;
Taylor, Carolyn ;
Barlow, William ;
Bliss, Judith ;
Bruzzi, Paolo ;
Cameron, David ;
Fountzilas, George ;
Loibl, Sibylle ;
Mackey, John .
LANCET, 2019, 393 (10179) :1440-1452
[7]   Clinical study on postoperative triple-negative breast cancer with Chinese medicine Study protocol for an observational cohort trial [J].
Chen, Jiajing ;
Qin, Yuenong ;
Sun, Chenping ;
Hao, Wei ;
Zhang, Shuai ;
Wang, Yi ;
Chen, Juan ;
Chen, Lixin ;
Ruan, Yiying ;
Liu, Sheng .
MEDICINE, 2018, 97 (25)
[8]  
Cheng Yue D., 2020, CHIN J CHIN MAT MED, V45, P4332
[9]   Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review [J].
Costa, Ricardo L. B. ;
Han, Hyo Sook ;
Gradishar, William J. .
BREAST CANCER RESEARCH AND TREATMENT, 2018, 169 (03) :397-406
[10]   Know your enemy: Genetics, aging, exposomic and inflammation in the war against triple negative breast cancer [J].
Fabbri, Francesco ;
Salvi, Samanta ;
Bravaccini, Sara .
SEMINARS IN CANCER BIOLOGY, 2020, 60 :285-293