Methods of Computational Determination of Growth Rates of Fatigue, Creep, and Thermal Fatigue Cracks in Poly- and Monocrystalline Blades of Gas Turbine Units

被引:5
|
作者
Semenov, A. S. [1 ]
Semenov, S. G. [1 ]
Getsov, L. B. [2 ]
机构
[1] St Petersburg State Polytech Univ, St Petersburg, Russia
[2] NPO TsKTI, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
blade; crack propagation; fatigue; creep; thermal fatigue; SINGLE-CRYSTAL SUPERALLOY; FRACTURE; PROPAGATION; INITIATION; BEHAVIOR; CRITERIA;
D O I
10.1007/s11223-015-9657-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The crack growth kinetics of fatigue, creep, and thermal fatigue cracks in blades of gas turbine units is studied through a direct three-dimensional finite-element stepwise modeling of the crack propagation process. Prediction of crack growth rate involves the use of the criteria based on stress intensity factors (or J-integrals) for fatigue cracks, on C (*)-integrals for creep cracks, and on a combination of stress intensity factors (or J-integrals) and C (*)-integrals for thermal fatigue cracks. The authors discuss the methods for determination of fatigue life of polycrystalline blades as well as some special features of calculations of the crack growth kinetics in monocrystalline blades. The paper presents some examples of results of finite-element calculations of the fatigue, creep, and thermal fatigue crack growth processes in rotating blades of gas turbine units.
引用
收藏
页码:268 / 290
页数:23
相关论文
共 28 条
  • [1] Methods of Computational Determination of Growth Rates of Fatigue, Creep, and Thermal Fatigue Cracks in Poly- and Monocrystalline Blades of Gas Turbine Units
    A. S. Semenov
    S. G. Semenov
    L. B. Getsov
    Strength of Materials, 2015, 47 : 268 - 290
  • [2] COMPUTER SIMULATION OF FATIGUE, CREEP AND THERMAL-FATIGUE CRACKS PROPAGATION IN GAS-TURBINE BLADES
    Semenov, Artem
    Semenov, Sergey
    Nazarenko, Anatoly
    Getsov, Leonid
    MATERIALI IN TEHNOLOGIJE, 2012, 46 (03): : 197 - 203
  • [3] Thermal fatigue resistance of protective coatings for gas turbine blades
    Rybnikov, AI
    Getsov, LB
    MATERIALS AT HIGH TEMPERATURES, 1995, 13 (03) : 125 - 131
  • [4] Thermal Fatigue Cracks in Gas Turbine Heat Shield Plates
    Neidel, Andreas
    Riesenbeck, Susanne
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2012, 49 (02): : 99 - 108
  • [5] CALCULATION AND EXPERIMENTAL ANALYSIS OF THERMAL FATIGUE OF GAS TURBINE BLADES.
    Trushechkin, V.P.
    Kolotnikov, M.E.
    Problemy Prochnosti, 1988, (02): : 75 - 80
  • [6] Fatigue testing of ceramic thermal barrier coatings for gas turbine blades
    Bartsch, M
    Marci, G
    Mull, K
    Sick, C
    ADVANCED ENGINEERING MATERIALS, 1999, 1 (02) : 127 - 129
  • [7] Theoretical-experimental study of the thermal fatigue of gas-turbine blades
    Trushechkin, V.P.
    Kolotnikov, M.E.
    Strength of materials, 1988, : 223 - 229
  • [8] Study of Creep–Fatigue Crack Growth Behavior in a Gas Turbine Casing
    Poursaeidi E.
    Kavandi A.
    Torkashvand K.
    Journal of Failure Analysis and Prevention, 2018, 18 (6) : 1607 - 1615
  • [9] Growth of naturally initiated fatigue cracks in ferritic gas turbine rotor steels
    Härkegård, G
    Denk, J
    Stärk, K
    INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (06) : 715 - 726
  • [10] Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission
    Zhang, Zhiheng
    Yang, Guoan
    Hu, Kun
    SENSORS, 2018, 18 (05)