A new class of solutions to a generalized nonlinear Schrodinger equation

被引:1
|
作者
Hood, S [1 ]
机构
[1] Univ Liverpool, Liverpool L69 3BX, Merseyside, England
来源
关键词
D O I
10.1088/0305-4470/31/48/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we compute new classes of symmetry reduction and associated exact solutions of a generalized nonlinear Schrodinger equation (GNLS), the generalized terms modelling dispersion and scattering. Several authors have obtained symmetry reductions of one-, two- and three-dimensional nonlinear Schrodinger equations; in all cases to date reductions have been based on a real new independent variable. In this paper we compute reductions in which the new independent variable is complex. We seek new reductions from a two-dimensional GNLS to a PDE in two independent variables and also reductions to ODEs. Five new classes of reduction are found.
引用
收藏
页码:9715 / 9727
页数:13
相关论文
共 50 条
  • [21] Envelope exact solutions for the generalized nonlinear Schrodinger equation with a source
    Yan, Zhenya
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24): : L401 - L406
  • [22] Exact travelling wave solutions for a generalized nonlinear Schrodinger equation
    Hizanidis, K
    Frantzeskakis, DJ
    Polymilis, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7687 - 7703
  • [23] Solitary wave solutions of a generalized derivative nonlinear Schrodinger equation
    Wang Ming-Liang
    Mang Jin-Liang
    Li Xiang-Zheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (01) : 39 - 42
  • [24] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [25] Darboux transformation and new periodic wave solutions of generalized derivative nonlinear Schrodinger equation
    Tian, Shou-fu
    Zhang, Tian-tian
    Zhang, Hong-qing
    PHYSICA SCRIPTA, 2009, 80 (06)
  • [26] Stationary Solutions for the Nonlinear Dispersive Schrodinger Equation with Generalized Evolution
    Biswas, Anjan
    Khalique, Chaudry Masood
    CHINESE JOURNAL OF PHYSICS, 2013, 51 (01) : 103 - 110
  • [27] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [28] A NEW CLASS OF NONLINEAR GENERALIZATIONS OF THE SCHRODINGER-EQUATION
    DODONOV, VV
    MIZRAHI, SS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23): : 7163 - 7168
  • [29] New solutions for perturbed chiral nonlinear Schrodinger equation
    Aly, E. S.
    Abdelrahman, Mahmoud A. E.
    Bourazza, S.
    Ahmadini, Abdullah Ali H.
    Msmali, Ahmed Hussein
    Askar, Nadia A.
    AIMS MATHEMATICS, 2022, 7 (07): : 12289 - 12302
  • [30] New analytical solutions to the nonlinear Schrodinger equation model
    Zhang, YY
    Zheng, Y
    Zhang, HQ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (11-12): : 775 - 782