Hit polynomials and excess in the mod P Steenrod algebra

被引:2
作者
Meyer, DM [1 ]
机构
[1] Univ Paris 13, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
hit polynomials; excess; Steenrod algebra;
D O I
10.1017/S0013091500000353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime. The primary purpose of this paper is to determine the excess of the conjugates of the Steenrod operations P[k; f], which are defined as P[k; f] := P(p(k-1) f) . P(p(k-2) f) ..... P(pf) . P(f). The result is then used to obtain sufficient conditions for an element in the polynomial algebra F-p[x(1),...,x(s)] to be in the image under the standard action of the Steenrod algebra. Results and methods are generalizations of previous work by Judith Silverman and by myself with Judith Silverman.
引用
收藏
页码:323 / 350
页数:28
相关论文
共 10 条
[1]  
CHEN SM, 1992, LECT NOTES MATH, V1509, P326
[2]  
CROSSLEY MD, 1998, P S PURE MATH, V63, P183
[3]  
Kraines D., 1971, B LOND MATH SOC, V3, P363, DOI 10.1112/blms/3.3.363
[4]  
Meyer Dagmar M., 2000, HOMOL HOMOTOPY APPL, V2, P1
[5]  
MEYER DM, 1998, MATH PROC CAMBRIDGE, V123, P531
[6]   THE STEENROD ALGEBRA AND ITS DUAL [J].
MILNOR, J .
ANNALS OF MATHEMATICS, 1958, 67 (01) :150-171
[7]   Kit polynomials and conjugation in the dual Steenrod algebra [J].
Silverman, JH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 :531-547
[8]   Stripping and conjugation in the Steenrod algebra [J].
Silverman, JH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :95-105
[9]   The nilpotence height of Sq(2n) [J].
Walker, G ;
Wood, RMW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) :1291-1295