Slipcasting of MAX phase tubes for nuclear fuel cladding applications

被引:16
|
作者
Galvin, T. [1 ]
Hyatt, N. C. [1 ]
Rainforth, W. M. [1 ]
Reaney, I. M. [1 ]
Shepherd, D. [2 ]
机构
[1] Univ Sheffield, Dept Mat Sci & Engn, Sir Robert Hadfield Bldg,Mappin St, Sheffield S1 3JD, S Yorkshire, England
[2] NNL, NNL Preston Lab, Preston PR4 0XJ, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
MAX phase; Slipcast; Nuclear fuel; Clad; Ti3SiC2; NEUTRON-IRRADIATION; TI3SIC2; TI3ALC2; TI2ALC; OXIDATION; CORROSION; EVOLUTION; BEHAVIOR; CR2ALC;
D O I
10.1016/j.nme.2020.100725
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
As a proof of concept, tubes of Ti3SiC2 MAX phase were slipcast in order to investigate its potential for the fabrication of fuel cladding for nuclear reactors. A slip consisting of 46% dry weight basis (dwb) water, 4% dwb polyethyleneimine (PEI), 0.5% dwb methylcellulose was used to cast the tubes, which were then sintered for 2 h under vacuum at 1450 degrees C. Silicon loss was observed at surface which resulted in the formation of TiC. The hoop stress to destruction of the tubes was measured and achieved a maximum of 9.1 +/- 2.2 MPa/mm of tube thickness.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods
    Marchal, N.
    Campos, C.
    Garnier, C.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (03) : 821 - 826
  • [22] Segmented mandrel tests of as-received and hydrogenated WWER fuel cladding tubes
    Kiraly, Marton
    Horvath, Marta
    Nagy, Richard
    Ver, Nora
    Hozer, Zoltan
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (09) : 2990 - 3002
  • [23] Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding
    Alat, Ece
    Motta, Arthur T.
    Comstock, Robert J.
    Partezana, Jonna M.
    Wolfe, Douglas E.
    JOURNAL OF NUCLEAR MATERIALS, 2016, 478 : 236 - 244
  • [24] Gel structure of the corrosion layer on cladding pipes of nuclear fuel
    Medek, Jiri
    Weishauptova, Zuzana
    JOURNAL OF NUCLEAR MATERIALS, 2009, 393 (02) : 306 - 310
  • [25] Microbial biofilm growth on irradiated, spent nuclear fuel cladding
    Bruhn, D. F.
    Frank, S. M.
    Roberto, F. F.
    Pinhero, P. J.
    Johnson, S. G.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 384 (02) : 140 - 145
  • [26] Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy
    Mi, Hongyi
    Mikael, Solomon
    Allen, Todd
    Sridharan, Kumar
    Butt, Darryl
    Blanchard, James P.
    Ma, Zhenqiang
    JOURNAL OF NUCLEAR MATERIALS, 2014, 445 (1-3) : 7 - 11
  • [27] Research Progress of Coating on Zirconium Alloy for Nuclear Fuel Cladding
    Bai Guanghai
    Chen Zhilin
    Zhang Yanwei
    Liu Erwei
    Xue Jiaxiang
    Yu Weiwei
    Wang Rongshan
    Li Rui
    Liu Tong
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (07) : 2035 - 2040
  • [28] Mechanical performance of oxidized Zr-Nb-O nuclear cladding tubes
    Gu Beom Jeong
    Yong Choi
    Sun Ig Hong
    The Physics of Metals and Metallography, 2014, 115 : 1281 - 1284
  • [29] Mechanical performance of oxidized Zr-Nb-O nuclear cladding tubes
    Jeong, Gu Beom
    Choi, Yong
    Hong, Sun Ig
    PHYSICS OF METALS AND METALLOGRAPHY, 2014, 115 (13) : 1281 - 1284
  • [30] Development of the ultra-microhardness technique for post irradiation examination of fuel cladding tubes
    Nakatsuka, M
    Nomata, T
    Umehara, H
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1998, 35 (05) : 344 - 352