The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery

被引:229
作者
Presser, Volker [2 ]
Dennison, Christopher R. [1 ]
Campos, Jonathan [2 ]
Knehr, Kevin W. [1 ]
Kumbur, Emin C. [1 ]
Gogotsi, Yury [2 ]
机构
[1] Drexel Univ, Dept Mech Engn, Electrochem Energy Syst Lab, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mat Sci & Engn, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
supercapacitors; electrochemical energy storage; grid energy storage; flow cells; SUPERCAPACITOR ELECTRODES; CARBON; PERFORMANCE; CARBIDE; POWER;
D O I
10.1002/aenm.201100768
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Availability of grid-scale electric energy storage systems with response rates on the order of seconds plays a key role in wide implementation of renewable energy sources. Here, a new concept called the electrochemical flow capacitor (EFC) is presented. This new concept shares the major advantages of both supercapacitors and flow batteries, providing rapid charging/discharging while enabling the decoupling of the power and energy ratings. Like in supercapacitors, energy is stored in the electric double layer of charged carbon particles. A flowable carbon-electrolyte mixture is employed as the active material for capacitive energy storage, and is handled in a similar fashion to flow or semi-solid batteries (i.e., for charging/discharging, it is pumped into an electrochemical cell, and for storage, it is pumped into reservoirs). This study presents the proof-of-concept of this technology and reports initial EFC performance data obtained under static and intermittent flow operations.
引用
收藏
页码:895 / 902
页数:8
相关论文
共 31 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions [J].
Basavalingu, B ;
Moreno, JMC ;
Byrappa, K ;
Gogotsi, YG ;
Yoshimura, M .
CARBON, 2001, 39 (11) :1763-1766
[3]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[4]   A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes [J].
Brogioli, D. ;
Zhao, R. ;
Biesheuvel, P. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :772-777
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]  
Chiang Y.-M., 2009, US, Patent No. [2010/0047671, 20100047371]
[7]   Titanium carbide derived nanoporous carbon for energy-related applications [J].
Dash, Ranjan ;
Chmiola, John ;
Yushin, Gleb ;
Gogotsi, Yury ;
Laudisio, Giovanna ;
Singer, Jonathan ;
Fischer, John ;
Kucheyev, Sergei .
CARBON, 2006, 44 (12) :2489-2497
[8]   Carbon spheres [J].
Deshmukh, Amit A. ;
Mhlanga, Sabelo D. ;
Coville, Neil J. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 70 (1-2) :1-28
[9]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[10]   Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density [J].
Izadi-Najafabadi, Ali ;
Yasuda, Satoshi ;
Kobashi, Kazufumi ;
Yamada, Takeo ;
Futaba, Don N. ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio ;
Hata, Kenji .
ADVANCED MATERIALS, 2010, 22 (35) :E235-+