On Gould-Hopper-Based Fully Degenerate Poly-Bernoulli Polynomials with a q-Parameter

被引:5
作者
Duran, Ugur [1 ]
Sadjang, Patrick Njionou [2 ]
机构
[1] Iskenderun Tech Univ, Dept Basic Sci Engn, Fac Engn & Nat Sci, TR-31200 Antakya, Turkey
[2] Univ Douala, Fac Ind Engn, BP 2701, Douala, Cameroon
关键词
Gould-Hopper polynomials; Bernoulli polynomials; Hermite polynomials; poly Bernoulli polynomials; Stirling numbers of second kind; Polylogarithm functions; Cauchy product; EXTENSIONS; IDENTITIES; HERMITE;
D O I
10.3390/math7020121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We firstly consider the fully degenerate Gould-Hopper polynomials with a q parameter and investigate some of their properties including difference rule, inversion formula and addition formula. We then introduce the Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q parameter and provide some of their diverse basic identities and properties including not only addition property, but also difference rule properties. By the same way of mentioned polynomials, we define the Gould-Hopper-based fully degenerate (alpha, q)-Stirling polynomials of the second kind, and then give many relations. Moreover, we derive multifarious correlations and identities for foregoing polynomials and numbers, including recurrence relations and implicit summation formulas.
引用
收藏
页数:14
相关论文
共 25 条
[1]  
Appell P., 1926, Fonctions hypergeometriques et hyperspheriques. Polynomes d'Hermite
[2]   A new generalization of Apostol type Hermite-Genocchi polynomials and its applications [J].
Araci, Serkan ;
Khan, Waseem A. ;
Acikgoz, Mehmet ;
Ozel, Cenap ;
Kumam, Poom .
SPRINGERPLUS, 2016, 5
[3]   POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS [J].
Bayad, Abdelmejid ;
Hamahata, Yoshinori .
KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) :15-24
[4]   Some discrete d-orthogonal polynomial sets [J].
Ben Cheikh, Y ;
Zaghouani, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 156 (02) :253-263
[5]   Multidimensional extensions of the Bernoulli and Appell polynomials [J].
Bretti, G ;
Ricci, PE .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :415-428
[6]   Poly-Bernoulli numbers and polynomials with a q parameter [J].
Cenkci, Mehmet ;
Komatsu, Takao .
JOURNAL OF NUMBER THEORY, 2015, 152 :38-54
[7]  
Dattoli G., 1999, REND MATH, V19, P385
[8]  
DURAN UGUR, 2018, Advanced Studies in Contemporary Mathematics, V28, P285, DOI 10.17777/ascm2017.28.2.285
[9]  
Khan W.A., 2015, TURK J ANAL NUMBER T, V3, P120, DOI [10.12691/tjant-3-5-2, DOI 10.12691/TJANT-3-5-2]
[10]  
Khan WA, 2016, J CLASS ANAL, V8, P65