Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection

被引:3
作者
Wang, Ling-Fang [1 ]
Wang, Yun-Ran [2 ]
Francis, Henry [2 ]
Lu, Ri [1 ]
Xia, Ming-Jun [1 ]
Liu, Feng [1 ,3 ]
Hopkinson, Mark [2 ]
Jin, Chao-Yuan [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310007, Peoples R China
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S3 7HQ, S Yorkshire, England
[3] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, Hangzhou 310007, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
MODULATION RESPONSE; GAIN; EMISSION; CARRIER; ABSORPTION;
D O I
10.1364/OE.389860
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effective manipulation of mode oscillation and competition is of fundamental importance for controlling light emission in semiconductor lasers. Here we develop a rate equation model which considers the spatially modulated gain and spontaneous emission, which are inherently governed by the ripple of the vacuum electromagnetic field in a Fabry-Perot (FP) microcavity. By manipulating the interplay between the spatial oscillation of the vacuum field and external optical injection via dual-beam laser interference, single longitudinal mode operation is observed in a FP-type microcavity with a side mode suppression ratio exceeding 40 dB. An exploration of this extended rate equation model bridges the gap between the classical model of multimode competition in semiconductor lasers and a quantum-optics understanding of radiative processes in microcavities. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:16486 / 16496
页数:11
相关论文
共 41 条
[1]   LONGITUDINAL MODE COMPETITION IN SEMICONDUCTOR-LASERS - RATE-EQUATIONS REVISITED [J].
ADAMS, MJ ;
OSINSKI, M .
IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1982, 129 (06) :271-274
[2]   Ultrafast photonic crystal nanocavity laser [J].
Altug, Hatice ;
Englund, Dirk ;
Vuckovic, Jelena .
NATURE PHYSICS, 2006, 2 (07) :484-488
[3]   GAIN AND INTERVALENCE BAND ABSORPTION IN QUANTUM-WELL LASERS [J].
ASADA, M ;
KAMEYAMA, A ;
SUEMATSU, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1984, 20 (07) :745-753
[4]   CAVITY QUANTUM ELECTRODYNAMIC ENHANCEMENT OF STIMULATED-EMISSION IN MICRODROPLETS [J].
CAMPILLO, AJ ;
EVERSOLE, JD ;
LIN, HB .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :437-440
[5]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[6]   GAIN-COUPLED DFB LASERS VERSUS INDEX-COUPLED AND PHASE-SHIFTED DFB LASERS - A COMPARISON BASED ON SPATIAL HOLE BURNING CORRECTED YIELD [J].
DAVID, K ;
MORTHIER, G ;
VANKWIKELBERGE, P ;
BAETS, RG ;
WOLF, T ;
BORCHERT, B .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (06) :1714-1723
[7]   Condensation of semiconductor microcavity exciton polaritons [J].
Deng, H ;
Weihs, G ;
Santori, C ;
Bloch, J ;
Yamamoto, Y .
SCIENCE, 2002, 298 (5591) :199-202
[9]   Cavity-enhanced stimulated emission cross section in polymer microlasers [J].
Djiango, Martin ;
Kobayashi, Takeyuki ;
Blau, Werner J. .
APPLIED PHYSICS LETTERS, 2008, 93 (14)
[10]   Modeling Widely Tunable Sampled-Grating DBR Lasers Using Traveling-Wave Model With Digital Filter Approach [J].
Dong, Lei ;
Zhang, Ruikang ;
Wang, Dingli ;
Zhao, Shengzhi ;
Jiang, Shan ;
Yu, Yonglin ;
Liu, Shuihua .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (15) :3181-3188