Second species periodic orbits of the elliptic 3 body problem

被引:12
作者
Bolotin, S
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Moscow Steklov Math Inst, Madison, WI 53706 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
3-body problem; collision; second species orbits; twist map;
D O I
10.1007/s10569-005-2172-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the plane restricted elliptic 3 body problem with small mass ratio and small eccentricity and prove the existence of many periodic orbits shadowing chains of collision orbits of the Kepler problem. Such periodic orbits were first studied by Poincare for the non-restricted 3 body problem. Poincare called them second species solutions.
引用
收藏
页码:343 / 371
页数:29
相关论文
共 17 条
[1]  
ALEXEYEV VM, 1970, ACT C INT MATH, V2, P893
[2]  
[Anonymous], RESTRICTED 3 BODY PR
[3]  
Arnold VI, 1989, ENCY MATH SCI
[4]  
Belbruno E.A., 2004, CAPTURE DYNAMICS CHA
[5]  
Bolotin S, 2006, DISCRETE CONT DYN S, V14, P235
[6]   Periodic and chaotic trajectories of the second species for the n-centre problem [J].
Bolotin, SV ;
Mackay, RS .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (01) :49-75
[7]   ON PERIODIC FLYBYS OF THE MOON [J].
BRUNO, AD .
CELESTIAL MECHANICS, 1981, 24 (03) :255-268
[8]   Consecutive quasi-collisions in the planar circular RTBP [J].
Font, J ;
Nunes, A ;
Simó, C .
NONLINEARITY, 2002, 15 (01) :115-142
[9]   SECOND-SPECIES SOLUTIONS IN THE CIRCULAR AND ELLIPTIC RESTRICTED THREE-BODY PROBLEM II-NUMERICAL EXPLORATIONS [J].
Gomez, Gerard ;
Olle, Merce .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02) :147-166
[10]   SECOND-SPECIES SOLUTIONS IN THE CIRCULAR AND ELLIPTIC RESTRICTED THREE-BODY PROBLEM I-EXISTENCE AND ASYMPTOTIC APPROXIMATION [J].
Gomez, Gerard ;
Olle, Merce .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02) :107-146