Sustained turbulence in the three-dimensional Gross-Pitaevskii model

被引:33
作者
Proment, Davide [1 ,2 ]
Nazarenko, Sergey [3 ]
Onorato, Miguel [1 ,2 ]
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] INFN, Sez Torino, I-10125 Turin, Italy
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
Quantum turbulence; Bose-Einstein condensation; Wave turbulence; Numerical simulations; KELVIN WAVE; VORTEX; CONDENSATION; PROBABILITY; AMPLITUDES; SPECTRUM; DYNAMICS; SOUND;
D O I
10.1016/j.physd.2011.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the three-dimensional forced-dissipated Gross-Pitaevskii equation. We force at relatively low wave numbers, expecting to observe a direct energy cascade and a consequent power-law spectrum of the form k(-alpha). Our numerical results show that the exponent a strongly depends on how the inverse particle cascade is attenuated at ks lower than the forcing wave-number. If the inverse cascade is arrested by a friction at low ks, we observe an exponent which is in good agreement with the weak wave turbulence prediction k(-1). For a hypo-viscosity, a k(-2) spectrum is observed which we explain using a critical balance argument. In simulations without any low k dissipation, a condensate at k = 0 is growing and the system goes through a strongly turbulent transition from a 4-wave to a 3-wave weak turbulence acoustic regime with evidence of k(-3/2) Zakharov-Sagdeev spectrum. In this regime, we also observe a spectrum for the incompressible kinetic energy which formally resembles the Kolmogorov k(-5/3), but whose correct explanation should be in terms of the Kelvin wave turbulence. The probability density functions for the velocities and the densities are also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 314
页数:11
相关论文
共 52 条
[1]   Reconnection of Superfluid Vortex Bundles [J].
Alamri, Sultan Z. ;
Youd, Anthony J. ;
Barenghi, Carlo F. .
PHYSICAL REVIEW LETTERS, 2008, 101 (21)
[2]  
[Anonymous], 1967, Soviet Phys. Dokl
[3]   An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates [J].
Bao, Weizhu ;
Wang, Hanquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) :612-626
[4]   Scenario of strongly nonequilibrated Bose-Einstein condensation [J].
Berloff, NG ;
Svistunov, BV .
PHYSICAL REVIEW A, 2002, 66 (01) :136031-136037
[5]   Modeling Kelvin Wave Cascades in Superfluid Helium [J].
Boffetta, G. ;
Celani, A. ;
Dezzani, D. ;
Laurie, J. ;
Nazarenko, S. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 156 (3-6) :193-214
[6]   Anomalous probability of large amplitudes in wave turbulence [J].
Choi, Y ;
Lvov, YV ;
Nazarenko, S ;
Pokorni, B .
PHYSICS LETTERS A, 2005, 339 (3-5) :361-369
[7]   Joint statistics of amplitudes and phases in wave turbulence [J].
Choi, Y ;
Lvov, YV ;
Nazarenko, S .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (1-2) :121-149
[8]   Probability densities and preservation of randomness in wave turbulence [J].
Choi, Y ;
Lvov, YV ;
Nazarenko, S .
PHYSICS LETTERS A, 2004, 332 (3-4) :230-238
[9]   Condensation of classical nonlinear waves [J].
Connaughton, C ;
Josserand, C ;
Picozzi, A ;
Pomeau, Y ;
Rica, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[10]   Kinetic theory and Bose-Einstein condensation [J].
Connaughton, C ;
Pomeau, Y .
COMPTES RENDUS PHYSIQUE, 2004, 5 (01) :91-106