A semiparametric Bernstein-von Mises theorem for Gaussian process priors

被引:46
作者
Castillo, Ismael [1 ]
机构
[1] CNRS, LPMA Paris, F-75013 Paris, France
关键词
Bayesian non and semiparametrics; Bernstein-von Mises Theorems; Gaussian process priors; Estimation of the center of symmetry; Cox's proportional hazards model; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; ASYMPTOTIC NORMALITY; CONSISTENCY; PARAMETERS; MODELS;
D O I
10.1007/s00440-010-0316-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is a contribution to the Bayesian theory of semiparametric estimation. We are interested in the so-called Bernstein-von Mises theorem, in a semiparametric framework where the unknown quantity is (theta, f), with theta the parameter of interest and f an infinite-dimensional nuisance parameter. Two theorems are established, one in the case with no loss of information and one in the information loss case with Gaussian process priors. The general theory is applied to three specific models: the estimation of the center of symmetry of a symmetric function in Gaussian white noise, a time-discrete functional data analysis model and Cox's proportional hazards model. In all cases, the range of application of the theorems is investigated by using a family of Gaussian priors parametrized by a continuous parameter.
引用
收藏
页码:53 / 99
页数:47
相关论文
共 30 条
[1]  
[Anonymous], 1986, SPRINGER SERIES STAT
[2]  
[Anonymous], 1965, Probability Theory and Related Fields, DOI DOI 10.1007/BF00535479
[3]  
Barron A, 1999, ANN STAT, V27, P536
[4]  
Birge L., 1984, PROBAB MATH STAT, V3, P259
[5]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[6]   Semi-parametric second-order efficient estimation of the period of a signal [J].
Castillo, I. .
BERNOULLI, 2007, 13 (04) :910-932
[7]   Lower bounds for posterior rates with Gaussian process priors [J].
Castillo, Ismael .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :1281-1299
[8]  
COX DR, 1972, J R STAT SOC B, V34, P187
[9]   Penalized maximum likelihood and semiparametric second-order efficiency [J].
Dalalyan, AS ;
Golubev, GK ;
Tsybakov, AB .
ANNALS OF STATISTICS, 2006, 34 (01) :169-201
[10]  
DIACONIS P, 1986, ANN STAT, V14, P1, DOI 10.1214/aos/1176349830