Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae

被引:37
作者
Can, Muyou [1 ,2 ]
Wei, Wei [1 ,2 ]
Zi, Hailing [3 ]
Bai, Magaweng [1 ,2 ]
Liu, Yunfei [1 ,2 ]
Gao, Dan [3 ]
Tu, Dengqunpei [1 ,2 ]
Bao, Yuhong [1 ,2 ]
Wang, Li [1 ,2 ]
Chen, Shaofeng [1 ,2 ]
Zhao, Xing [3 ]
Qu, Guangpeng [1 ,2 ]
机构
[1] State Key Lab Hulless Barley & Yak Germplasm Reso, Lhasa 850000, Peoples R China
[2] Tibet Acad Agr & Anim Husb Sci, Inst Grassland Sci, Lhasa 850000, Peoples R China
[3] Novogene Bioinformat Inst, Beijing 100083, Peoples R China
关键词
PREDICTION; FINDER;
D O I
10.1038/s41597-020-0518-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Kobresiaplants are important forage resources in the Qinghai-Tibet Plateau and are essential in maintaining the ecological balance of grasslands. Therefore, it is beneficial to obtainKobresiagenome resources and study the adaptive characteristics ofKobresiaplants in the Qinghai-Tibetan Plateau. We assembled the genome ofKobresia littledaleiC. B. Clarke, which was about 373.85 Mb in size. 96.82% of the bases were attached to 29 pseudo-chromosomes, combining PacBio, Illumina and Hi-C sequencing data. Additional investigation of the annotation identified 23,136 protein-coding genes. 98.95% of these were functionally annotated. According to phylogenetic analysis, K. littledaleiin Cyperaceae separated from Poaceae about 97.6 million years ago after separating fromAnanas comosusin Bromeliaceae about 114.3mya. ForK. littledalei, we identified a high-quality genome at the chromosome level. This is the first time a reference genome has been established for a species of Cyperaceae. This genome will help additional studies focusing on the processes of plant adaptation to environments with high altitude and cold weather.
引用
收藏
页数:8
相关论文
共 46 条
[1]   HiCPlotter integrates genomic data with interaction matrices [J].
Akdemir, Kadir Caner ;
Chin, Lynda .
GENOME BIOLOGY, 2015, 16
[2]  
Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
[3]   Repbase Update, a database of repetitive elements in eukaryotic genomes [J].
Bao, Weidong ;
Kojima, Kenji K. ;
Kohany, Oleksiy .
MOBILE DNA, 2015, 6
[4]   Tandem repeats finder: a program to analyze DNA sequences [J].
Benson, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :573-580
[5]  
Blanco Enrique, 2007, Curr Protoc Bioinformatics, VChapter 4, DOI 10.1002/0471250953.bi0403s18
[6]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[7]   Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions [J].
Burton, Joshua N. ;
Adey, Andrew ;
Patwardhan, Rupali P. ;
Qiu, Ruolan ;
Kitzman, Jacob O. ;
Shendure, Jay .
NATURE BIOTECHNOLOGY, 2013, 31 (12) :1119-+
[8]  
Chin CS, 2016, NAT METHODS, V13, P1050, DOI [10.1038/nmeth.4035, 10.1038/NMETH.4035]
[9]  
Conesa Ana, 2008, Int J Plant Genomics, V2008, P619832, DOI 10.1155/2008/619832
[10]   Pfam: the protein families database [J].
Finn, Robert D. ;
Bateman, Alex ;
Clements, Jody ;
Coggill, Penelope ;
Eberhardt, Ruth Y. ;
Eddy, Sean R. ;
Heger, Andreas ;
Hetherington, Kirstie ;
Holm, Liisa ;
Mistry, Jaina ;
Sonnhammer, Erik L. L. ;
Tate, John ;
Punta, Marco .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D222-D230