Role of microRNAs in stem/progenitor cells and cardiovascular repair

被引:81
作者
Jakob, Philipp [2 ]
Landmesser, Ulf [1 ,2 ]
机构
[1] Univ Zurich Hosp, Dept Cardiol, Cardiovasc Ctr, CH-8091 Zurich, Switzerland
[2] Zurich Ctr Integrat Human Physiol, Zurich, Switzerland
关键词
MicroRNA; Stem cell; Progenitor cell; Cardiovascular repair; Endothelium; EMBRYONIC STEM-CELLS; RNA-INTERFERENCE; CARDIAC DIFFERENTIATION; REGULATE EXPRESSION; HUMAN FIBROBLASTS; PROGENITOR CELLS; GENE-EXPRESSION; SELF-RENEWAL; HOST GENES; DICER;
D O I
10.1093/cvr/cvr311
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
MicroRNAs (miRNAs), small non-coding RNAs, play a critical role in differentiation and self-renewal of pluripotent stem cells, as well as in differentiation of cardiovascular lineage cells. Several miRNAs have been demonstrated to repress stemness factors such as Oct4, Nanog, Sox2 and Klf4 in embryonic stem cells, thereby promoting embryonic stem cell differentiation. Furthermore, targeting of different miRNAs promotes reprogramming towards induced pluripotent stem cells. MicroRNAs are critical for vascular smooth muscle cell differentiation and phenotype regulation, and miR-143 and miR-145 play a particularly important role in this respect. Notably, these miRNAs are down-regulated in several cardiovascular disease states, such as in atherosclerotic lesions and vascular neointima formation. MicroRNAs are critical regulators of endothelial cell differentiation and ischaemia-induced neovascularization. miR-126 is important for vascular integrity, endothelial cell proliferation and neovascularization. miR-1 and miR-133 are highly expressed in cardiomyocytes and their precursors and regulate cardiomyogenesis. In addition, miR-499 promotes differentiation of cardiomyocyte progenitor cells. Notably, miRNA expression is altered in cardiovascular disease states, and recent studies suggest that dysregulated miRNAs may limit cardiovascular repair responses. Dysregulation of miRNAs may lead to an altered function and differentiation of cardiovascular progenitor cells, which is also likely to represent a limitation of autologous cell-based treatment approaches in these patients. These findings suggest that targeting of specific miRNAs may represent an interesting novel opportunity to impact on endogenous cardiovascular repair responses, including effects on stem/progenitor cell differentiation and functions. This approach may also serve to optimize cell-based treatment approaches in patients with cardiovascular disease.
引用
收藏
页码:614 / 622
页数:9
相关论文
共 101 条
[1]   Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function [J].
Albinsson, Sebastian ;
Skoura, Athanasia ;
Yu, Jun ;
DiLorenzo, Annarita ;
Fernandez-Hernando, Carlos ;
Offermanns, Stefan ;
Miano, Joseph M. ;
Sessa, William C. .
PLOS ONE, 2011, 6 (04)
[2]   MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function [J].
Albinsson, Sebastian ;
Suarez, Yajaira ;
Skoura, Athanasia ;
Offermanns, Stefan ;
Miano, Joseph M. ;
Sessa, William C. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (06) :1118-U80
[3]   Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency [J].
Anokye-Danso, Frederick ;
Trivedi, Chinmay M. ;
Juhr, Denise ;
Gupta, Mudit ;
Cui, Zheng ;
Tian, Ying ;
Zhang, Yuzhen ;
Yang, Wenli ;
Gruber, Peter J. ;
Epstein, Jonathan A. ;
Morrisey, Edward E. .
CELL STEM CELL, 2011, 8 (04) :376-388
[4]   An intronic microRNA silences genes that are functionally antagonistic to its host gene [J].
Barik, Sailen .
NUCLEIC ACIDS RESEARCH, 2008, 36 (16) :5232-5241
[5]   Biogenesis and Regulation of Cardiovascular MicroRNAs [J].
Bauersachs, Johann ;
Thum, Thomas .
CIRCULATION RESEARCH, 2011, 109 (03) :334-347
[6]   Dicer is essential for mouse development [J].
Bernstein, E ;
Kim, SY ;
Carmell, MA ;
Murchison, EP ;
Alcorn, H ;
Li, MZ ;
Mills, AA ;
Elledge, SJ ;
Anderson, KV ;
Hannon, GJ .
NATURE GENETICS, 2003, 35 (03) :215-217
[7]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[8]   Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster [J].
Boettger, Thomas ;
Beetz, Nadine ;
Kostin, Sawa ;
Schneider, Johanna ;
Krueger, Marcus ;
Hein, Lutz ;
Braun, Thomas .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (09) :2634-2647
[9]   MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice [J].
Bonauer, Angelika ;
Carmona, Guillaume ;
Iwasaki, Masayoshi ;
Mione, Marina ;
Koyanagi, Masamichi ;
Fischer, Ariane ;
Burchfield, Jana ;
Fox, Henrik ;
Doebele, Carmen ;
Ohtani, Kisho ;
Chavakis, Emmanouil ;
Potente, Michael ;
Tjwa, Marc ;
Urbich, Carmen ;
Zeiher, Andreas M. ;
Dimmeler, Stefanie .
SCIENCE, 2009, 324 (5935) :1710-1713
[10]   A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis [J].
Cheloufi, Sihem ;
Dos Santos, Camila O. ;
Chong, Mark M. W. ;
Hannon, Gregory J. .
NATURE, 2010, 465 (7298) :584-U76