Organic Bioelectronic Devices for Metabolite Sensing

被引:69
|
作者
Koklu, Anil [1 ]
Ohayon, David [1 ]
Wustoni, Shofarul [1 ]
Druet, Victor [1 ]
Saleh, Abdulelah [1 ]
Inal, Sahika [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Organ Bioelect Lab, Biol & Environm Sci & Engn BESE, Thuwal 239556900, Saudi Arabia
关键词
MOLECULARLY IMPRINTED POLYMERS; FIELD-EFFECT TRANSISTOR; WALLED CARBON NANOTUBES; ACTIVATED PROTEIN-KINASE; DIRECT ELECTRON-TRANSFER; DEBYE-SCREENING LENGTH; THIN-FILM TRANSISTORS; ELECTROCHEMICAL TRANSISTORS; GLUCOSE-OXIDASE; LABEL-FREE;
D O I
10.1021/acs.chemrev.1c00395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
引用
收藏
页码:4581 / 4635
页数:55
相关论文
共 50 条
  • [1] Organic Bioelectronic Materials and Devices
    Malliaras, George
    Abidian, Mohammad Reza
    ADVANCED MATERIALS, 2015, 27 (46) : 7492 - 7492
  • [2] Exploiting mixed conducting polymers in organic and bioelectronic devices
    Keene, Scott T.
    Gueskine, Viktor
    Berggren, Magnus
    Malliaras, George G.
    Tybrandt, Klas
    Zozoulenko, Igor
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (32) : 19144 - 19163
  • [3] A Self-standing Organic Supercapacitor to Power Bioelectronic Devices
    Nikiforidis, Georgios
    Wustoni, Shofarul
    Ohayon, David
    Druet, Victor
    Inal, Sahika
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) : 7896 - 7907
  • [4] Biomembranes in bioelectronic sensing
    Jayaram, A. K.
    Pappa, A. M.
    Ghosh, S.
    Manzer, Z. A.
    Traberg, W. C.
    Knowles, T. P. J.
    Daniel, S.
    Owens, R. M.
    TRENDS IN BIOTECHNOLOGY, 2022, 40 (01) : 107 - 123
  • [5] Aptamers as elements of bioelectronic devices
    Mir, Monica
    Katakis, Ioanis
    MOLECULAR BIOSYSTEMS, 2007, 3 (09) : 620 - 622
  • [6] Optimization of bacteriorhodopsin for bioelectronic devices
    Wise, KJ
    Gillespie, NB
    Stuart, JA
    Krebs, MP
    Birge, RR
    TRENDS IN BIOTECHNOLOGY, 2002, 20 (09) : 387 - 394
  • [7] Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices
    Griffith, Matthew J.
    Holmes, Natalie P.
    Elkington, Daniel C.
    Cottam, Sophie
    Stamenkovic, Joshua
    Kilcoyne, A. L. David
    Andersen, Thomas R.
    NANOTECHNOLOGY, 2020, 31 (09)
  • [8] All organic actuation and sensing devices
    Di Pasquale, Giovanna
    Fortuna, Luigi
    Graziani, Salvatore
    La Rosa, Manuela
    Nicolosi, Donata
    Sicurella, Giovanni
    Umana, Elena
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 771 - +
  • [9] Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices
    Giovannitti, Alexander
    Thorley, Karl J.
    Nielsen, Christian B.
    Li, Jun
    Donahue, Mary J.
    Malliaras, George G.
    Rivnay, Jonathan
    McCulloch, Iain
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
  • [10] The quest for miniaturized soft bioelectronic devices
    Kim, Jaemin
    Ghaffari, Roozbeh
    Kim, Dae-Hyeong
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03):