A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS

被引:0
作者
Lupini, Martino [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
关键词
groupoid; von Neumann algebra; property (T); Kazhdan groupoid; bimodule; cohomology; representation;
D O I
10.1017/S144678871800040X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a characterization of relative property (T) for a subgroupoid H\subset G in terms of the inclusions L(H)\subset L(G).
引用
收藏
页码:363 / 386
页数:24
相关论文
共 23 条
[1]  
Aaserud A., 2011, THESIS
[2]   Cohomology of property T groupoids and applications [J].
Anantharaman-Delaroche, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :977-1013
[3]  
[Anonymous], 2008, NEW MATH MONOGRAPHS
[4]  
[Anonymous], 2007, MATH SURVEYS MONOGR
[5]  
Blackadar B., 2006, Operator Algebras and Non-commutative Geometry, III, Encyclopaedia of Mathematical Sciences, V122
[6]   PROPERTY-T FOR VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
JONES, V .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) :57-62
[7]  
DELAHARPE P, 1989, ASTERISQUE, V175, P158
[8]  
Gardella E., 2017, PREPRINT
[9]   Representations of etale groupoids on LP-spaces [J].
Gardella, Eusebio ;
Lupini, Martino .
ADVANCES IN MATHEMATICS, 2017, 318 :233-278
[10]  
HAAGERUP U, 1979, INVENT MATH, V50, P279