PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval

被引:191
作者
Zhang, Wenxiao [1 ]
Xiao, Chunxia [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
RECOGNITION;
D O I
10.1109/CVPR.2019.01272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud based retrieval for place recognition is an emerging problem in vision field. The main challenge is how to find an efficient way to encode the local features into a discriminative global descriptor. In this paper, we propose a Point Contextual Attention Network (PCAN), which can predict the significance of each local point feature based on point context. Our network makes it possible to pay more attention to the task-relevent features when aggregating local features. Experiments on various benchmark datasets show that the proposed network can provide outperformance than current state-of-the-art approaches.
引用
收藏
页码:12428 / 12437
页数:10
相关论文
共 41 条
[1]  
[Anonymous], ARXIV180810322
[2]  
[Anonymous], 2017, IEEE P COMPUT VIS PA, DOI DOI 10.1109/CVPR.2017.16
[3]  
[Anonymous], 2015, P IEEE C COMPUTER VI, DOI 10.1109/CVPR.2015.7298801
[4]  
Arandjelovic R, 2018, IEEE T PATTERN ANAL, V40, P1437, DOI [10.1109/CVPR.2016.572, 10.1109/TPAMI.2017.2711011]
[5]   Nanoparticles considered as mixtures for toxicological research [J].
Deng, Hua ;
Zhang, Ying ;
Yu, Hongtao .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2018, 36 (01) :1-20
[6]  
Frome A, 2004, LECT NOTES COMPUT SC, V3023, P224
[7]   Texture Mapping for 3D Reconstruction with RGB-D Sensor [J].
Fu, Yanping ;
Yan, Qingan ;
Yang, Long ;
Liao, Jie ;
Xiao, Chunxia .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4645-4653
[8]   Using spin images for efficient object recognition in cluttered 3D scenes [J].
Johnson, AE ;
Hebert, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) :433-449
[9]   Learning Compact Geometric Features [J].
Khoury, Marc ;
Zhou, Qian-Yi ;
Koltun, Vladlen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :153-161
[10]   Predicting Good Features for Image Geo-Localization Using Per-Bundle VLAD [J].
Kim, Hyo Jin ;
Dunn, Enrique ;
Frahm, Jan-Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1170-1178