Progress in improving thermodynamics and kinetics of new hydrogen storage materials

被引:7
作者
Song, Li-fang [1 ,2 ]
Jiang, Chun-hong [1 ,2 ]
Liu, Shu-sheng [1 ,2 ]
Jiao, Cheng-li [1 ,2 ]
Si, Xiao-liang [1 ,2 ]
Wang, Shuang [1 ,2 ]
Li, Fen [1 ]
Zhang, Jian [1 ]
Sun, Li-xian [1 ]
Xu, Fen [1 ,2 ,3 ]
Huang, Feng-lei [4 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Liaoning Normal Univ, Fac Chem & Chem Engn, Dalian 116029, Peoples R China
[4] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia borane; hydrogen storage materials; hydrides; kinetics; metal organic frameworks; thermodynamics; METAL-ORGANIC FRAMEWORKS; N-H SYSTEM; AMMONIA-BORANE DEHYDROGENATION; THERMAL-DECOMPOSITION; LITHIUM AMIDE; RETICULAR SYNTHESIS; CATALYZED FORMATION; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; ADSORPTION;
D O I
10.1007/s11467-011-0175-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 141 条
[11]   Crystal structure and stability of LiAlD4 with TiF3 additive [J].
Brinks, HW ;
Fossdal, A ;
Fonnelop, JE ;
Hauback, BC .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 397 (1-2) :291-295
[12]   Preparation of LiBH4@carbon micro-macrocellular foams: tuning hydrogen release through varying microporosity [J].
Brun, Nicolas ;
Janot, Raphael ;
Sanchez, Clement ;
Deleuze, Herve ;
Gervais, Christel ;
Morcrette, Mathieu ;
Backov, Renal .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (06) :824-830
[13]   A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane [J].
Chandra, Manish ;
Xu, Qiang .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :190-194
[14]  
Chen B., 2005, ANGEW CHEM, V117, P4823, DOI DOI 10.1002/ange.200462787
[15]   Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6 [J].
Chen, J ;
Kuriyama, N ;
Xu, Q ;
Takeshita, HT ;
Sakai, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11214-11220
[16]   Interaction between lithium amide and lithium hydride [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (39) :10967-10970
[17]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304
[18]   Recent progress in hydrogen storage [J].
Chen, Ping ;
Zhu, Min .
MATERIALS TODAY, 2008, 11 (12) :36-43
[19]   Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane [J].
Cheng, Fangyi ;
Ma, Hua ;
Li, Yueming ;
Chen, Jun .
INORGANIC CHEMISTRY, 2007, 46 (03) :788-794
[20]   Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage [J].
Choi, Yoon Jeong ;
Lee, Jung Woo ;
Choi, Jung Hoon ;
Kang, Jeung Ku .
APPLIED PHYSICS LETTERS, 2008, 92 (17)