Progress in improving thermodynamics and kinetics of new hydrogen storage materials

被引:7
作者
Song, Li-fang [1 ,2 ]
Jiang, Chun-hong [1 ,2 ]
Liu, Shu-sheng [1 ,2 ]
Jiao, Cheng-li [1 ,2 ]
Si, Xiao-liang [1 ,2 ]
Wang, Shuang [1 ,2 ]
Li, Fen [1 ]
Zhang, Jian [1 ]
Sun, Li-xian [1 ]
Xu, Fen [1 ,2 ,3 ]
Huang, Feng-lei [4 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Liaoning Normal Univ, Fac Chem & Chem Engn, Dalian 116029, Peoples R China
[4] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia borane; hydrogen storage materials; hydrides; kinetics; metal organic frameworks; thermodynamics; METAL-ORGANIC FRAMEWORKS; N-H SYSTEM; AMMONIA-BORANE DEHYDROGENATION; THERMAL-DECOMPOSITION; LITHIUM AMIDE; RETICULAR SYNTHESIS; CATALYZED FORMATION; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; ADSORPTION;
D O I
10.1007/s11467-011-0175-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 141 条
[1]   Dehydrogenation kinetics of as-received and ball-milled LiAlH4 [J].
Andreasen, A ;
Vegge, T ;
Pedersen, AS .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (12) :3672-3678
[2]   Thermal and mechanically activated decomposition of LiAlH4 [J].
Ares, J. R. ;
Aguey-Zinsou, K. -F. ;
Porcu, M. ;
Sykes, J. M. ;
Dornheim, A. ;
Klassen, T. ;
Bormann, R. .
MATERIALS RESEARCH BULLETIN, 2008, 43 (05) :1263-1275
[3]   Hydrogen storage in 1D nanotube-like channels metal-organic frameworks: Effects of free volume and heat of adsorption on hydrogen uptake [J].
Assfour, Bassem ;
Seifert, Gotthard .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (19) :8135-8143
[4]   Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]3- in lithium aluminohydride [J].
Balema, VP ;
Dennis, KW ;
Pecharsky, VK .
CHEMICAL COMMUNICATIONS, 2000, (17) :1665-1666
[5]   Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling [J].
Balema, VP ;
Wiench, JW ;
Dennis, KW ;
Pruski, M ;
Pecharsky, VK .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 329 (1-2) :108-114
[6]   In situ thermal desorption of H2 from LiNH2-2LiH monitored by environmental SEM [J].
Beattie, Shane D. ;
Langmi, Henrietta W. ;
McGrady, G. Sean .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) :376-379
[7]   Desorption of LiAlH4 with Ti- and V-based additives [J].
Blanchard, D ;
Brinks, HW ;
Hauback, BC ;
Norby, P .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 108 (1-2) :54-59
[8]   Hydrogen as promoter and inhibitor of superionicity: A case study on Li-N-H systems [J].
Blomqvist, Andreas ;
Araujo, C. Moyses ;
Scheicher, Ralph H. ;
Srepusharawoot, Pornjuk ;
Li, Wen ;
Chen, Ping ;
Ahuja, Rajeev .
PHYSICAL REVIEW B, 2010, 82 (02)
[9]   Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids [J].
Bluhm, Martin E. ;
Bradley, Mark G. ;
Butterick, Robert, III ;
Kusari, Upal ;
Sneddon, Larry G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (24) :7748-7749
[10]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9