Aluminum Nano arrays for Plasmon-Enhanced Light Harvesting

被引:91
作者
Lee, Minah [1 ]
Kim, Jong Uk [1 ]
Lee, Ki Joong [2 ]
Ahn, SooHoon [3 ]
Shin, Yong-Beom [2 ,4 ]
Shin, Jonghwa [1 ]
Park, Chan Beum [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305338, South Korea
[2] Korea Res Inst Biosci & Biotechnol, Biomed Translat Res Ctr, Taejon 305806, South Korea
[3] Korea Univ Sci & Technol, Korea Inst Nucl Safety, Dept Mech & Mat Engn, Taejon 305350, South Korea
[4] Korea Univ Sci & Technol, Nanobiotechnol Major, Taejon 305350, South Korea
基金
新加坡国家研究基金会;
关键词
plasmon; aluminum; polydopamine; light harvesting; nanoantenna; CORROSION PROTECTION; METAL NANOSTRUCTURES; RAMAN-SCATTERING; NANOPARTICLES; SILVER; RESONANCE; EFFICIENT; SOLAR; PHOTOCATALYSIS; NANOCONTAINERS;
D O I
10.1021/acsnano.5b01541
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical limits of coinage-metal-based plasmonic materials demand sustainable, abundant alternatives with a wide plasmonic range of the solar energy spectrum. Aluminum (Al) is an emerging alternative, but its instability in aqueous environments critically limits its applicability to various light-harvesting systems. Here, we report a design strategy to achieve a robust platform for plasmon-enhanced light harvesting using Al nanostructures. The incorporation of mussel-inspired polydopamine nanolayers in the Al nanoarrays allowed for the reliable use of Al plasmonic resonances in a highly corrosive photocatalytic redox solution and provided nanoscale arrangement of organic photosensitizers on Al surfaces. The Al photosensitizer core shell assemblies exhibited plasmon-enhanced light absorption, which resulted in a 300% efficiency increase in photo-to-chemical conversion. Our strategy enables stable and advanced use of aluminum for plasmonic light harvesting.
引用
收藏
页码:6206 / 6213
页数:8
相关论文
共 40 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Preventing the Degradation of Ag Nanoparticles Using an Ultrathin a-Al2O3 Layer as Protective Barrier [J].
Baraldi, G. ;
Carrada, M. ;
Toudert, J. ;
Ferrer, F. J. ;
Arbouet, A. ;
Paillard, V. ;
Gonzalo, J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (18) :9431-9439
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   EIS studies of coated metals in accelerated exposure [J].
Bierwagen, G ;
Tallman, D ;
Li, JP ;
He, LY ;
Jeffcoate, C .
PROGRESS IN ORGANIC COATINGS, 2003, 46 (02) :148-157
[5]   Pushing the High-Energy Limit of Plasmonics [J].
Bisio, Francesco ;
Zaccaria, Remo Proietti ;
Moroni, Riccardo ;
Maidecchi, Giulia ;
Alabastri, Alessandro ;
Gonella, Grazia ;
Giglia, Angelo ;
Andolfi, Laura ;
Nannarone, Stefano ;
Mattera, Lorenzo ;
Canepa, Maurizio .
ACS NANO, 2014, 8 (09) :9239-9247
[6]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[7]   Theoretical and spectroscopic investigations of a complex of Al(III) with caffeic acid [J].
Cornard, JP ;
Lapouge, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (20) :4470-4478
[8]   Design Considerations for Plasmonic Photovoltaics [J].
Ferry, Vivian E. ;
Munday, Jeremy N. ;
Atwater, Harry A. .
ADVANCED MATERIALS, 2010, 22 (43) :4794-4808
[9]   Development of Nanoparticle Stabilized Polymer Nanocontainers with High Content of the Encapsulated Active Agent and Their Application in Water-Borne Anticorrosive Coatings [J].
Haase, Martin F. ;
Grigoriev, Dmitry O. ;
Moehwald, Helmuth ;
Shchukin, Dmitry G. .
ADVANCED MATERIALS, 2012, 24 (18) :2429-2435
[10]   Porous 'Ouzo-effect' silica-ceria composite colloids and their application to aluminium corrosion protection [J].
Hollamby, Martin J. ;
Borisova, Dimitriya ;
Moehwald, Helmuth ;
Shchukin, Dmitry .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :115-117