SOME RECENT RESULTS ON THE DIRICHLET PROBLEM FOR (p, q)-LAPLACE EQUATIONS

被引:70
作者
Marano, Salvatore A. [1 ]
Mosconi, Sunra J. N. [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2018年 / 11卷 / 02期
关键词
(p; q)-Laplace operator; constant-sign; nodal solution; eigenvalue problem; coercive; resonant; critical; asymmetric nonlinearity; Q-LAPLACIAN PROBLEM; NONTRIVIAL SOLUTION; ELLIPTIC PROBLEMS; SUPERLINEAR (P; EXISTENCE; MULTIPLICITY; GROWTH; SIGN;
D O I
10.3934/dcdss.2018015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A short account of recent existence and multiplicity theorems on the Dirichlet problem for an elliptic equation with (p, q)-Laplacian in a bounded domain is performed. Both eigenvalue problems and different types of perturbation terms are briefly discussed. Special attention is paid to possibly coercive, resonant, subcritical, critical, or asymmetric right-hand sides.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 40 条
[1]  
Agarwal R. P., 2010, MATH SURVEYS MONOGR, V161
[2]  
[Anonymous], 1979, Mathematical Modelling Techniques
[3]  
[Anonymous], 1979, LECT NOTES BIOMATHEM
[4]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[5]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[6]  
Benci V., 2001, Topol. Methods Nonlinear Anal., V17, P191
[7]  
Benouhiba N., 2012, INT J PURE APPL MATH, V80, P727
[8]   On the solutions of the (p, q)-Laplacian problem at resonance [J].
Benouhiba, Nawel ;
Belyacine, Zahia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 :74-81
[9]   On sign-changing solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :101-129
[10]   On positive solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :3277-3301