On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential

被引:4
作者
Adilkhanov, A. N. [1 ]
Taimanov, I. A. [2 ,3 ]
机构
[1] Nazarbayev Univ, Natl Lab Astana, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 42卷
关键词
Schrodinger operator; Discrete spectrum; Galerkin method; Soliton; MOUTARD TRANSFORMATION; EQUATION;
D O I
10.1016/j.cnsns.2016.04.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete spectra of certain two-dimensional Schrodinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov-Veselov equation (a two-dimensional generalization of the Korteweg-de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrodinger operator. The numerical scheme is applicable to a general 2D Schrodinger operator with fast decaying potential. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 13 条