Poly-Bernoulli numbers and polynomials with a q parameter

被引:29
作者
Cenkci, Mehmet [1 ]
Komatsu, Takao [2 ]
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Poly-Bernoulli and poly-Cauchy numbers and polynomials; Weighted Stirling numbers; A-Stirling numbers; Congruences; STIRLING NUMBERS; CAUCHY NUMBERS;
D O I
10.1016/j.jnt.2014.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define poly-Bernoulli numbers and polynomials with a q parameter. These numbers and polynomials show a correspondence to poly-Cauchy numbers and polynomials with a q parameter recently defined by the second author. We study some arithmetical and number theoretical properties of these numbers and polynomials as well. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 22 条
[1]  
[Anonymous], EXPLICIT FORMULA GEN
[2]  
Arakawa T, 2014, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-4-431-54919-2
[3]  
Arakawa T., 1999, Comment. Math. Univ. St. Paul, V48, P159
[4]   POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS [J].
Bayad, Abdelmejid ;
Hamahata, Yoshinori .
KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) :15-24
[5]  
Brewbaker C., 2008, Integers, V8, P9
[6]  
CARLITZ L, 1980, FIBONACCI QUART, V18, P147
[7]   A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials [J].
Chang, CH ;
Ha, CW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (02) :758-767
[8]  
Comtet L., 1974, ADV COMBINATORICS
[9]   The Arakawa-Kaneko zeta function [J].
Coppo, Marc-Antoine ;
Candelpergher, Bernard .
RAMANUJAN JOURNAL, 2010, 22 (02) :153-162
[10]  
Graham R. L., 1994, CONCRETE MATH, DOI DOI 10.1371/journal.pgen.1000695