Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate)-ran-(polyethylene glycol methacrylate) graft copolymers exhibiting temperature-dependent rheology and self-assembly

被引:12
|
作者
da Silva, Jessica Bassi [1 ]
Haddow, Peter [2 ]
Bruschi, Marcos Luciano [1 ]
Cook, Michael Thomas [2 ]
机构
[1] Univ Estadual Maringa, Dept Pharm, Lab Res & Dev Drug Delivery Syst, Maringa, Parana, Brazil
[2] Univ Hertfordshire, Sch Life & Med Sci, Hatfield AL10 9AB, Herts, England
基金
英国工程与自然科学研究理事会;
关键词
MEO(2)MA; PEG; RAFT polymerization; Graft copolymers; Block copolymers; DRUG-DELIVERY; RAFT POLYMERIZATION; AQUEOUS-MEDIA; POLYMERS; POLY(N-ISOPROPYLACRYLAMIDE); MUCOADHESIVE; BEHAVIOR; NANOPARTICLES; POLOXAMER; KINETICS;
D O I
10.1016/j.molliq.2021.117906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graft copolymers with brush-type architectures are explored containing poly(ethylene glycol) methacrylates copolymerized with "thermoresponsive" monomers which impart lower critical solution temperatures to the polymer. Initially, the chemical structure of the thermoresponsive polymer is explored, synthesizing materials containing N-isopropyl acrylamide, N,N-diethyl acrylamide and diethylene glycol methyl ether methacrylate. Thermoresponsive graft-copolymers containing di(ethylene glycol) methyl ether methacrylate (DEGMA) exhibited phase transition temperature close to physiological conditions (ca 30 degrees C). The effect of polymer composition was explored, including molecular weight, PEG-methacrylate (PEGMA) terminal functionality and PEGMA/DEGMA ratios. Molecular weight exhibited complex relationships with phase behavior, where lower molecular weight systems appeared more stable above lower critical solution temperatures (LCST), but a lower limit was identified. PEGMA/DEGMA feed was able to control transition temperature, with higher PEGMA ratios elevating thermal transition. It was found that PEGMA terminated with methoxy functionality formed stable colloidal structures above LCST, whereas those the hydroxy termini generally formed two-phase sedimented systems when heated. Two thermoresponsive DEGMA-based graft polymers, poly(PEGMA(7)-ran-DEGMA(170)) and poly(PEGMA(1)-ran-DEGMA(38)), gave interesting temperature-dependent rheology, transitioning to a viscous state upon heating. These materials may find application in forming thermothickening systems which modify rheology upon exposure to the body's heat. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Thermoresponsive copolymers of methacrylic acid and poly(ethylene glycol) methyl ether methacrylate
    Jones, JA
    Novo, N
    Flagler, K
    Pagnucco, CD
    Carew, S
    Cheong, C
    Kong, XZ
    Burke, NAD
    Stöver, HDH
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (23) : 6095 - 6104
  • [2] Self-Assembly of Poly(vinylpyridine-b-oligo(ethylene glycol) methyl ether methacrylate) Diblock Copolymers
    Stewart-Sloan, Charlotte R.
    Wang, Rui
    Sing, Michelle K.
    Olsen, Bradley D.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2017, 55 (15) : 1181 - 1190
  • [3] Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature
    Li, Shasha
    Liu, Yong
    Ji, Sha
    Zhou, Zheng
    Li, Qifang
    COLLOID AND POLYMER SCIENCE, 2014, 292 (11) : 2993 - 3001
  • [4] Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature
    Shasha Li
    Yong Liu
    Sha Ji
    Zheng Zhou
    Qifang Li
    Colloid and Polymer Science, 2014, 292 : 2993 - 3001
  • [5] Chitosan Grafted with Thermoresponsive Poly(di(ethylene glycol) Methyl Ether Methacrylate) for Cell Culture Applications
    Dasgupta, Natun
    Sun, Duo
    Gorbet, Maud
    Gauthier, Mario
    POLYMERS, 2023, 15 (06)
  • [6] Bulk dynamics of the thermoresponsive random copolymer of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA)
    Santos, Ana C.
    Santos, Andreia F. M.
    Diogo, Herminio P.
    Alves, Sergio P. C.
    Farinha, Jose Paulo S.
    Correia, Natdlia T.
    Dionisio, Madalena
    Teresa Vicios, M.
    POLYMER, 2018, 148 : 339 - 350
  • [7] Thermoresponsive nanogels of modified poly(di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate)s
    Lipowska-Kur D.
    Otulakowski Ł.
    Trzebicka B.
    Utrata-Wesołek A.
    Dworak A.
    Dworak, Andrzej (adworak@cmpw-pan.edu.pl), 1600, MDPI AG, Postfach, Basel, CH-4005, Switzerland (12):
  • [8] Thermoresponsive Nanogels of Modified Poly((di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate))s
    Lipowska-Kur, Daria
    Otulakowski, Lukasz
    Trzebicka, Barbara
    Utrata-Wesolek, Alicja
    Dworak, Andrzej
    POLYMERS, 2020, 12 (08)
  • [9] Thermoresponsive oligo(ethylene glycol) methyl ether methacrylate based copolymers: composition and comonomer effect
    Li, Qian
    Wang, Lezhi
    Chen, Feihong
    Constantinou, Anna P.
    Georgiou, Theoni K.
    POLYMER CHEMISTRY, 2022, 13 (17) : 2506 - 2518
  • [10] Synthesis of lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate copolymers with tunable microstructure and emulsifying properties
    Iborra, Agustin
    Salvatierra, Lucas
    Giussi, Juan M.
    Azzaroni, Omar
    EUROPEAN POLYMER JOURNAL, 2019, 116 : 117 - 125