Commutative graded-n-coherent and graded valuation rings

被引:3
作者
Assarrar, Anass [1 ]
Mandou, Najib [1 ]
Tekir, Unsal [2 ]
Koc, Suat [2 ]
机构
[1] Univ SM Ben Abdellah Fez, Modelling & Math Struct Lab, Dept Math, Fac Sci & Technol Fez, Box 2202, Fes, Morocco
[2] Marmara Univ, Dept Math, Istanbul, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2022年 / 51卷 / 04期
关键词
coherent rings and modules; n-coherent rings and modules; graded modules and rings; graded-coherent rings and modules; graded-valuation rings; graded trivial extension ring;
D O I
10.15672/hujms.947574
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R = circle plus R-alpha is an element of G(alpha) be a commutative ring with unity graded by an arbitrary grading commutative monoid G. For each positive integer, the notions of a graded-n-coherent module and a graded-n-coherent ring are introduced. In this paper many results are generalized from n-coherent rings to graded-n-coherent rings. In the last section, we provide necessary and sufficient conditions for the graded trivial extension ring to be a graded-valuation ring.
引用
收藏
页码:1047 / 1057
页数:11
相关论文
共 15 条
[1]   Graded-valuation domains [J].
Anderson, D. D. ;
Anderson, David F. ;
Chang, Gyu Whan .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) :4018-4029
[2]  
Bakkari C., 2019, Indian J. Math., V61, P421
[3]   UNIFORMLY GRADED-COHERENT RINGS [J].
Bakkari, Chahrazade ;
Mahdou, Najib ;
Riffi, Abdelkbir .
QUAESTIONES MATHEMATICAE, 2021, 44 (10) :1371-1391
[4]   On Graded 2-Prime Ideals [J].
Bataineh, Malik ;
Abu-Dawwas, Rashid .
MATHEMATICS, 2021, 9 (05) :1-10
[5]  
Bourbaki N., 1985, Algebre commutative, chapitres 1 a 4
[6]  
Bourbaki N., 2007, ALGEBRE
[7]   DISCRETE VALUATION OVERRINGS OF A GRADED NOETHERIAN DOMAIN [J].
Chang, Gyu Whan ;
Oh, Dong Yeol .
JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (01) :45-61
[8]   PARAMETERIZING FAMILIES OF NON-NOETHERIAN RINGS [J].
COSTA, DL .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :3997-4011
[9]  
Dobbs DE, 1997, LECT NOTES PURE APPL, V185, P269
[10]  
Gilmer R., 1984, CHICAGO LECT MATH